Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route

Author(s):  
Emin Salur ◽  
Abdullah Aslan ◽  
Mustafa Kuntoğlu ◽  
Mustafa Acarer
2010 ◽  
Vol 150-151 ◽  
pp. 1163-1166 ◽  
Author(s):  
Xiao Fei Wang ◽  
Xiao Lan Cai

CNT-reinforced aluminum matrix composites was produced by high-energy ball milling, the effect of rotary speed and milling time on the particle size distribution,the density and hardness of CNT-aluminum matrix composites were studied,it was observed that the rotary speed and milling time have an important effect on the mechanical properties of the CNT-aluminum matrix composites.


2021 ◽  
Vol 878 ◽  
pp. 89-97
Author(s):  
Shogo Kimura ◽  
Junki Ueda ◽  
Hideaki Tsukamoto

Carbon nanotube (CNT) has been one of promising candidates as a reinforcement in metal matrix composites (MMCs) for its variety of excellent properties such as lightweight, high strength etc. It is necessary to disperse CNT to the level of each one in order to lead to efficiently reflect the excellent essential physical properties of CNT in the composites. This research investigates fabrication processes linked with dry ball milling and cold pressing followed by sintering to uniformly disperse CNT in aluminum (Al) matrix. It was found that dispersibility of CNT were improved with increasing ball milling time based on observation of morphology of mixed powders and the composites using SEM. Vickers hardness and tensile strength of CNT/ Al composites increased with increasing ball milling time up to 24 hours, while they were constant or decreased because of increase of voids in case of longer than 24 hours of ball milling time.


2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


2021 ◽  
Vol 63 (4) ◽  
pp. 350-355
Author(s):  
Mehmet Ayvaz ◽  
Hakan Cetinel

Abstract To be able to successfully produce ceramic-reinforced aluminum matrix composites by using the powder metallurgy method, the wetting of ceramic reinforcements should be increased. In addition, the negative effects of the oxide layer of the aluminum matrix on sinterability should be minimized. In order to break the oxide layer, the deoxidation property of Mg can be used. Furthermore, by creating a liquid phase, both wettability and sinterability can be improved. In this study, the effects of Mg and Cu alloy elements and sintering phase on the wettability, sinterability, and mechanical properties of Al/B4C composites were investigated. For this purpose, various amounts (5, 10, 20, and 30 wt.-%) of B4C reinforced Al5Cu and Al5Mg matrix composites were produced by the powder metallurgy method. After pressing under 400 MPa pressure, composite samples were sintered for 4 hours. The sintering was carried out in two different groups as solid phase sintering at 560 °C and liquid phase sintering at 610 °C. Despite the deoxidation effect of Mg in Al5Mg matrix composites, higher mechanical properties were determined in Al5Cu composites which were sintered in liquid phase because wettability increased. The highest mechanical properties were obtained in the 20 wt.-% B4C reinforced Al5Cu sample sintered in liquid phase.


2014 ◽  
Vol 49 (25) ◽  
pp. 3115-3125 ◽  
Author(s):  
Pouya Hosseini Vajargah ◽  
Hossein Abdizadeh ◽  
Mohammad Amin Baghchesara

2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Sign in / Sign up

Export Citation Format

Share Document