scholarly journals The behavior of natural biomass materials as drug carriers in releasing loaded Gentamicin sulphate

2020 ◽  
Vol 13 (12) ◽  
pp. 8920-8934 ◽  
Author(s):  
Ashraf Bayoumi ◽  
Marwa T. Sarg ◽  
Tamer Y.A. Fahmy ◽  
Noha F. Mohamed ◽  
Waleed K. El-Zawawy
Author(s):  
Kumar P ◽  
S Kumar ◽  
A Kumar ◽  
M Chander

The purpose of this study was to prepare and characterize solid dispersions of the antibacterial agent Cefdinir with PEG 4000 and PVP K-30 with a view to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Cefdinir was considerably improved when formulated in solid dispersions with PVP K-30 and PEG 4000 as compared with pure drug and physical mixtures. The results from XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction.


2017 ◽  
Vol 68 (7) ◽  
pp. 1518-1423
Author(s):  
Adina Turcu Stiolica ◽  
Mariana Popescu ◽  
Maria Viorica Bubulica ◽  
Carmen Nicoleta Oancea ◽  
Claudiu Nicolicescu ◽  
...  

Gold nanoparticles are considered the newest drug carriers for different diseases. Therefore it is appropriate continuous optimization of their preparation. In this study, gold colloids with an average size of 1 - 26 nm were obtained by the reduction of tetrachloroauric acid with trisodium citrate. The nanomaterials were characterized by UV-Vis spectroscopy and dynamic light scattering technique. In addition, zeta potential was measured for samples synthesized in order to determine the stability of the colloids. A Two-level Full Factorial design was chosen to determine the optimum set of process parameters (chloroauric acid concentration and sodium citrate concentration) and their effect on various gold nanoparticles characteristics (size and zeta potential). These effects were quantified using Design of Experiments (DoE) with 5 runs and 1 centerpoint. The selected objective and process model in this investigation are screening and interaction. Findings from this research show that to obtain particles larger than 35 nm, it is recommended to increase sodium citrate concentration, at low chloroauric acid values. These conditions will help to achieve smaller zeta potential, too.


2008 ◽  
Author(s):  
Elvin Blanco ◽  
Brent D. Weinberg ◽  
Jinming Gao
Keyword(s):  

2019 ◽  
Vol 26 (31) ◽  
pp. 5862-5874 ◽  
Author(s):  
Wang Liao ◽  
Shengnuo Fan ◽  
Yuqiu Zheng ◽  
Shaowei Liao ◽  
Ying Xiong ◽  
...  

Glioblastoma Multiforme (GBM) is the most frequent glioma with a poor prognosis. The mainstay treatment for GBM is chemotherapy, but the average survival of GBM remains unsatisfactory due to therapeutic resistance. Poor permeability restricted by the Blood Brain Barrier (BBB) and the presence of Glioblastoma Stem Cells (GSCs) remain as two problems for chemotherapy. Recently, nanocarriers have attracted much attention in the research of GBM, owing to their advantages in self-assembly, biosafety, release controllability, and BBB penetrability, making them promising candidates for GBM treatment. This article aims to review the biologic signatures of BBB and GSCs, as well as the new development of nano-drug delivery systems to facilitate our understanding of targeted treatment for GBM.


2020 ◽  
Vol 26 (15) ◽  
pp. 1637-1649 ◽  
Author(s):  
Imran Ali ◽  
Sofi D. Mukhtar ◽  
Heyam S. Ali ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery. Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors. Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety. Conclusions: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.


2020 ◽  
Vol 26 (33) ◽  
pp. 4174-4184
Author(s):  
Marina P. Abuçafy ◽  
Bruna L. da Silva ◽  
João A. Oshiro-Junior ◽  
Eloisa B. Manaia ◽  
Bruna G. Chiari-Andréo ◽  
...  

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.


Sign in / Sign up

Export Citation Format

Share Document