An active disturbance rejection control guidance law based collision avoidance for unmanned aerial vehicles

2018 ◽  
Vol 77 ◽  
pp. 658-669 ◽  
Author(s):  
Ning Zhang ◽  
Wendong Gai ◽  
Guilin Zhang ◽  
Jing Zhang
Author(s):  
Zian Wang ◽  
Zheng Gong ◽  
Yongliang Chen ◽  
Mingwei Sun ◽  
Jinfa Xu

Tilt rotor unmanned aerial vehicles exhibit their effectiveness via a novel and convenient structure. However, the flight control system is a critical problem in need of a robust solution. Focusing on its flight features, which display strong nonlinear and varying dynamics, caused by complexity in the aerodynamic layout and tilting structure, a practical control scheme is proposed to meet such technical issues. This paper first develops the nonlinear model, consisting of the interference between rotors and the wing body, relying on wind tunnel technology. A simplified linear model that decomposes the longitudinal and lateral components is used in order to facilitate controller design. Then, a time-scale separation decoupling control scheme based upon active disturbance rejection control is proposed to cope with control challenges. Introducing the concept of virtual control input, an effective control allocation is obtained by choosing the appropriate bandwidth in the frequency domain. The extended state observer is applied to estimate and compensate for unknown total disturbances and model uncertainties. Finally, robustness verification, successful test-bench experiments, and practical flight tests that show the fast tracking and disturbance rejection of the active disturbance rejection control controller are discussed. The proposed practical coupling rejection control design demonstrates its capability to employ a single input single output method to control a tri-tiltRotor flying wing unmanned aerial vehicle relying on active disturbance rejection control.


2019 ◽  
Vol 41 (13) ◽  
pp. 3777-3786 ◽  
Author(s):  
Yu’ang Liu ◽  
Qing Wang ◽  
Chaoyang Dong ◽  
Maopeng Ran

Time-varying formation control for unmanned aerial vehicles (UAVs) swarm systems with external disturbances is investigated via active disturbance rejection control (ADRC). The external disturbances are estimated by a designed extended state observer (ESO). Then, a distributed formation control protocol is designed according to the output of ESO, under which the predefined time-varying formation can be achieved. The closed-loop system under the proposed control strategy is analyzed. In addition, the expression of formation center function of the disturbed formation control is also depicted. Finally, numerical instances are simulated in order to demonstrate the validity and superiority of the proposed control strategy.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3977
Author(s):  
Yukuan Liu ◽  
Guanglin He ◽  
Zenghui Qiao ◽  
Zhaoxuan Guo ◽  
Zehu Wang

The time delay of seekers has grown to be a serious issue for tactical missile guidance with the development of flight vehicle technologies. To address the problem, a measurement compensation system for the seeker, with lags and delays based on predictive active disturbance rejection control, is proposed. In addition, to eliminate the effects of target maneuvers to the tactical missile guidance, an adaptive finite-time convergent sliding mode guidance law, based on super-twisting algorithm, is proposed in three-dimensional missile-target engagement kinematics. Specifically, the compensation system consists of a predictive tracking structure and an active disturbance rejection control system, which could follow a virtual measurement without lags and delays. The compensation system has advantages in disturbance rejection and model inaccuracy addressing, compared with existing compensation methods for seeker measurement. As for the sliding mode guidance law design, the proposed approach is based on an improved super-twisting algorithm with fast convergent adaptive gains, which has advantages in addressing unknown but bounded target maneuvers and avoiding chattering of the classical sliding mode control. As a result, the measurement compensation system and the adaptive sliding mode guidance law is verified robust and effective under the proposed constraints by the simulation examples.


Sign in / Sign up

Export Citation Format

Share Document