Tip leakage flow and aeroacoustics analysis of a low-speed axial fan

2020 ◽  
Vol 98 ◽  
pp. 105700 ◽  
Author(s):  
Bo Luo ◽  
Wuli Chu ◽  
Haoguang Zhang
2020 ◽  
Vol 30 (10) ◽  
pp. 4425-4452
Author(s):  
Adrián Vazquez Gonzalez ◽  
Andrés Meana-Fernández ◽  
Jesús Manuel Fernández

Purpose The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF) structures in the passages of the rotor blades in a low-speed axial fan. Design/methodology/approach A full three dimensional (3D)-viscous unsteady Reynolds-averaged Navier-stokes (RANS) (URANS) simulation of the flow within a periodic domain of the axial stage has been performed at three different flow rate coefficients (φ = 0.38, 0.32, 0.27) using ReNormalization Group k-ε turbulence modelling. A typical tip clearance of 2.3 per cent of the blade span has been modelled on a reduced domain comprising a three-vaned stator and a two-bladed rotor with circumferential periodicity. A non-conformal grid with hybrid meshing, locally refined O-meshes on both blades and vanes walls with (100 × 25 × 80) elements, a 15-node meshed tip gap and circumferential interfaces for sliding mesh computations were also implemented. The unsteady motion of the rotor has been covered with 60 time steps per blade event. The simulations were validated with experimental measurements of the static pressure in the shroud of the blade tip region. Findings It has been observed that both TLF and intensities of the tip leakage vortex (TLV) are significantly influenced by upstream stator wakes, especially at nominal and partial load conditions. In particular, the leakage flow, which represents 12.4 per cent and 11.3 per cent of the working flow rate, respectively, has shown a clear periodic fluctuation clocked with the vane passing period in the relative domain. The periodic fluctuation of the TLF is in the range of 2.8-3.4 per cent of the mean value. In addition, the trajectory of the tip vortex is also notably perturbed, with root-mean squared fluctuations reaching up to 18 per cent and 6 per cent in the regions of maximum interaction at 50 per cent and 25 per cent of the blade chord for nominal and partial load conditions, respectively. On the contrary, the massive flow separation observed in the tip region of the blades for near-stall conditions prevents the formation of TLV structures and neglects any further interaction with the upstream vanes. Research limitations/implications Despite the increasing use of large eddy simulation modelling in turbomachinery environments, which requires extremely high computational costs, URANS modelling is still revealed as a useful technique to describe highly complex viscous mechanisms in 3D swirl flows, such as unsteady tip flow structures, with reasonable accuracy. Originality/value The paper presents a validated numerical model that simulates the unsteady response of the TLF to upstream perturbations in an axial fan stage. It also provides levels of instabilities in the TLV derived from the deterministic non-uniformities associated to the vane wakes.


2009 ◽  
Author(s):  
Jesu´s Manuel Ferna´ndez Oro ◽  
Katia Mari´a Argu¨elles Di´az ◽  
Carlos Santolaria Morros ◽  
Mo´nica Galdo Vega

In last years, numerical modelling has reached a significant level of maturity in the analysis of axial turbomachinery flows. Full-unsteady, three-dimensional computations have been demonstrated as a powerful tool to characterize viscous phenomena on blade row interactions and blade passage structures. In particular, major effects have been focused on the study of deterministic fluctuations in order to quantify the impact of periodic unsteadiness on the time-averaged flow. An additional complexity concerns to the influence of the tip vortex structures on the deterministic patterns. Hence, some researchers have advanced experimental evidences on the contribution of tip leakage flow to the time-resolved distributions. Tip vortex, shedding energy at a wide range of scales, has been shown to be significant in the description of the spanwise momentum transfer and the appearance of mixing losses. Recently, the authors have investigated the impact of the tip vortex on the passage flow structures of a jet fan with symmetric blades. This work revealed valuable information about tip vortex transport in low-speed axial turbomachinery and demonstrated the ability of commercial codes to simulate three-dimensional, vortical structures with high accuracy. The present paper takes advantage of the same numerical methodology to highlight the influence of the deterministic correlations that describe the stator-rotor interaction on the tip vortex in a single-stage axial fan. Up to now, few works addressing deterministic contributions over the tip leakage flow are available in the literature, so more investigation is needed to understand the complexity of these physical mechanisms. Our contribution to the topic is based on a 3D, unsteady numerical simulation of the flow within a reduced periodic domain of the full-annulus axial stage, composed by only 3-vane and 2-blade passages. This simplification allows an enhancement of the grid density when massive parallel computations are employed. Also, comparison with experimental data measured using hot-wire anemometry is provided to validate the numerical model. The results show how the non-uniformities of the stator wake-core structure in the relative frame of reference are conditioning the tip leakage flow, addressing the influence of the operating conditions or the interrow spacing. The final objective is to provide levels of instabilities in the tip vortex derived from deterministic non-uniformities associated to vane-to-vane flow patterns, applicable in further modelling of deterministic stresses.


2019 ◽  
Vol 183 ◽  
pp. 107-129 ◽  
Author(s):  
Seyed Mohsen Alavi Moghadam ◽  
Matthias Meinke ◽  
Wolfgang Schröder

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hongmei Jiang ◽  
Li He ◽  
Qiang Zhang ◽  
Lipo Wang

Modern high-pressure turbine blades operate at high-speed conditions. The over-tip-leakage (OTL) flow can be high-subsonic or even transonic. From the consideration of problem simplification and cost reduction, the OTL flow has been studied extensively in low-speed experiments. It has been assumed a redesigned low-speed blade profile with a matched blade loading should be sufficient to scale the high-speed OTL flow down to the low-speed condition. In this paper, the validity of this conventional scaling approach is computationally examined. The computational fluid dynamics (CFD) methodology was first validated by experimental data conducted in both high- and low-speed conditions. Detailed analyses on the OTL flows at high- and low-speed conditions indicate that, only matching the loading distribution with a redesigned blade cannot ensure the match of the aerodynamic performance at the low-speed condition with that at the high-speed condition. Specifically, the discrepancy in the peak tip leakage mass flux can be as high as 22%, and the total pressure loss at the low-speed condition is 6% higher than the high-speed case. An improved scaling method is proposed hereof. As an additional dimension variable, the tip clearance can also be “scaled” down from the high-speed to low-speed case to match the cross-tip pressure gradient between pressure and suction surfaces. The similarity in terms of the overall aerodynamic loss and local leakage flow distribution can be improved by adjusting the tip clearance, either uniformly or locally.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110deg and blade chord of 1.0m. Data were obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0×105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle image velocimetry was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip end-wall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the undertip flow near the end wall due to the moving wall is observed and the effect on the tip leakage vortex examined.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095107
Author(s):  
Jun Li ◽  
Jun Hu ◽  
Chenkai Zhang

Casing pressure measurements and Stereoscopic Particle-Image Velocimetry (SPIV) measurements are used together to characterize the behavior of the rotor tip leakage flow at both the design and near-stall conditions in a low-speed multistage axial compressor. A three-dimensional Navier-Stokes solver is also performed for the multistage compressor and the prediction of tip leakage flow is compared with SPIV data and casing dynamic static pressure data. During the experiment 10 high-frequency Kulite transducers are mounted in the outer casing of the rotor 3 to investigate the complex flow near the compressor casing and Fourier analyses of the dynamic static pressure on the casing of the rotor 3 are carried out to investigate the tip leakage flow characteristics. At the same time, the two CCD cameras are arranged at the same side of the laser light sheet, which is suitable for investigating unsteady tip leakage flow in the multistage axial compressor. The SPIV measurements identify that the tip leakage flow exists in the rotor passage. The influence of tip leakage flow leads to the existence of low axial velocity region in the rotor passage and the alternating regions of positive and negative radial velocity indicates the emergence of tip leakage vortex (TLV). The trajectory of the tip leakage vortex moves from the suction surface toward the pressure surface of adjacent blade, which is aligned close to the rotor at the design point (DP). However, the tip leakage vortex becomes unstable and breaks down at the near-stall point (NS), making the vortex trajectory move upstream in the rotor passage and causing a large blockage in the middle of the passage.


Author(s):  
Shaojuan Geng ◽  
Hongwu Zhang ◽  
Jingyi Chen ◽  
Weiguang Huang

A numerical study on the unsteady tip leakage flow with discrete micro tip injection from casing shroud in a low-speed isolated axial compressor rotor is presented. The main target is to clarify the flow mechanism of how the stall control measures act on the tip leakage flow typified by its self-induced unsteady flow characteristics. At operating condition near stall point, a series of calculations have been carried out for different axial position of injector and different injected mass flow rate. The computation results of flow field near rotor tip region show that under the influence of injected flow, the transient pressure distribution fluctuates along blade chord on both pressure and suction sides with respect to the relative position of injector and rotor. The pressure difference across the pressure and suction sides of compressor blade changes correspondingly, thus introduces a forced flow unsteadiness interacting with the unsteady tip leakage flow. When the injection is relatively strong and able to meet the tip leakage flow at its origination, the self-induced unsteadiness of tip leakage flow can be suppressed completely. In most cases, both frequency components of the self-induced unsteadiness and forced-induced unsteadiness are co-existing. The corresponding transient flow contours show that a local high pressure spot appears near blade pressure side, which moves downstream and shifts the tip leakage flow trajectory with less or without touching the neighboring pressure surface of the blade. Based on this understanding of discrete tip injection as force-induced flow unsteadiness, the numerical results are also analyzed to optimize the effect of injection in changing the route of tip leakage flow trajectories and therefore the chance of stability improvement of the compressor rotor.


2013 ◽  
Vol 22 (6) ◽  
pp. 565-572 ◽  
Author(s):  
Juan Du ◽  
Jichao Li ◽  
Kai Wang ◽  
Feng Lin ◽  
Chaoqun Nie

Author(s):  
Dominic Lallier-Daniels ◽  
Stephane Moreau ◽  
Marlene Sanjose

The influence of tip leakage flow on the performance of turbomachinery, both from an aerodynamic and acoustic point of view, has been demonstrated by several authors. However, most studies present in the literature are focused on the effects of tip leakage from an aerodynamic point of view and often forgo the mechanisms associated with the acoustics effect. The effect of different tip geometries is also still ill understood. The current advancement of a numerical study delving into tip leakage flow noise in low-speed turbomachinery applications is presented in this paper. The study as a whole aims to investigate the mechanisms associated with tip leakage flow noise on different axial fans with varying tip configurations. The study is carried out using lattice-Boltzmann simulations that allow to obtain the aerodynamic and aeroacoustic field simultaneously. As a first step in this investigation of tip flow noise, this paper focuses on a free-tip axial flow fan with a complex tip geometry. The global aerodynamic and acoustic performance of the fan is evaluated numerically and compared to available experimental results. An investigation of the simulated flowfield with regards to the observed acoustics is then carried out.


Sign in / Sign up

Export Citation Format

Share Document