scholarly journals Complementary roles of platelet αIIbβ3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles

2020 ◽  
Vol 310 ◽  
pp. 17-25
Author(s):  
Alexandra C.A. Heinzmann ◽  
Mieke F.A. Karel ◽  
Daniëlle M. Coenen ◽  
Tanja Vajen ◽  
Nicole M.M. Meulendijks ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah L. Millington-Burgess ◽  
Matthew T. Harper

AbstractArterial thrombosis triggers myocardial infarction and is a leading cause of death worldwide. Procoagulant platelets, a subpopulation of activated platelets that expose phosphatidylserine (PS), promote coagulation and occlusive thrombosis. Procoagulant platelets may therefore be a therapeutic target. PS exposure in procoagulant platelets requires TMEM16F, a phospholipid scramblase. Epigallocatechin gallate (EGCG) has been reported to inhibit TMEM16F but this has been challenged. We investigated whether EGCG inhibits PS exposure in procoagulant platelets. PS exposure is often measured using fluorophore-conjugated annexin V. EGCG quenched annexin V-FITC fluorescence, which gives the appearance of inhibition of PS exposure. However, EGCG did not quench annexin V-APC fluorescence. Using this fluorophore, we show that EGCG does not inhibit annexin V binding to procoagulant platelets. We confirmed this by using NBD-labelled PS to monitor PS scrambling. EGCG did not quench NBD fluorescence and did not inhibit PS scrambling. Procoagulant platelets also release PS-exposing extracellular vesicles (EVs) that further propagate coagulation. Surprisingly, EGCG inhibited EV release. This inhibition required the gallate group of EGCG. In conclusion, EGCG does not inhibit PS exposure in procoagulant platelets but does inhibit the EV release. Future investigation of this inhibition may help us further understand how EVs are released by procoagulant platelets.


2015 ◽  
Vol 37 (5) ◽  
pp. 1934-1944 ◽  
Author(s):  
Guoxing Liu ◽  
Guilai Liu ◽  
Hong Chen ◽  
Oliver Borst ◽  
Meinrad Gawaz ◽  
...  

Background/Aims: The ubiquitously expressed Ca2+ Activated Cl- Channel Ano6 participates in the stimulation of cell membrane scrambling. Defective Ano6 underlies the Scott syndrome, an inherited bleeding disorder with impaired scrambling of plasma membrane phospholipids. At least in theory, the bleeding disorder of Scott syndrome may result from impaired platelet function. Activators of platelets include thrombin and collagen related peptide (CRP), which trigger increase of cytosolic Ca2+-activity ([Ca2+]i), production of reactive oxygen species (ROS), degranulation, integrin activation, as well as cell shrinkage and phospholipid scrambling of the cell membrane. The present study thus explored whether Ano6 modifies activation-induced alterations of cytosolic Ca2+-activity ([Ca2+]i), degranulation (P-selectin exposure), integrin activation, phosphatidylserine exposure on the platelet surface and platelet volume. Methods: Platelets from mice lacking Ano6 (ano6-/-) were compared to platelets from corresponding wild-type mice (ano6+/+). [Ca2+]i was estimated from Fluo-3 fluorescence, ROS from DCFDA fluorescence, degranulation from P-selectin abundance, integrin activation from αIIbβ3-integrin abundance, phosphatidylserine abundance from annexin-V-binding, and cell volume from forward scatter. Results: Platelet number in blood was slightly higher in ano6-/- mice than in ano6+/+ mice. Without activation [Ca2+]i and volume were similar in ano6-/- and ano6+/+ platelets as well as ROS abundance, P-selectin abundance, αIIbβ3 integrin activation, and phosphatidylserine exposure were negligible in both genotypes. Thrombin (0.01 U/ml) and CRP (2 or 5 µg/ml) increased [Ca2+]i, ROS abundance, platelet degranulation, αIIbβ3 integrin activation, and triggered annexin-V-binding as well as cell shrinkage, all effects less pronounced in ano6-/- than in ano6+/+ platelets. Conclusions: Genetic knockout of Ano6 blunts thrombin- and CRP-induced activation and apoptosis of blood platelets.


2019 ◽  
Vol 8 (1) ◽  
pp. 1608786 ◽  
Author(s):  
Ivan K. H. Poon ◽  
Michael A. F. Parkes ◽  
Lanzhou Jiang ◽  
Georgia K. Atkin-Smith ◽  
Rochelle Tixeira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document