Springtime depletion of tropospheric ozone, gaseous elemental mercury and non-methane hydrocarbons in the European Arctic, and its relation to atmospheric transport

2007 ◽  
Vol 41 (38) ◽  
pp. 8511-8526 ◽  
Author(s):  
Kristina Eneroth ◽  
Kim Holmén ◽  
Torunn Berg ◽  
Norbert Schmidbauer ◽  
Sverre Solberg
2014 ◽  
Vol 14 (8) ◽  
pp. 11041-11074 ◽  
Author(s):  
H. Zhang ◽  
X. W. Fu ◽  
C.-J. Lin ◽  
X. Wang ◽  
X. B. Feng

Abstract. This study reports the speciated concentration and the potential sources of atmospheric mercury measured at the Shangri-La Atmosphere Watch Regional Station (SAWRS), a pristine high-altitude site (3580 m a.s.l.) in Tibetan Plateau, China. The total gaseous mercury (TGM, defined as the sum of Gaseous Elemental Mercury, GEM, and gaseous oxidized mercury, GOM), GOM and particulate-bound mercury (PBM) were monitored from November 2009 to November 2010 to investigate the characteristics and atmospheric transport of mercury influenced by the Indian summer monsoon (ISM) and westerlies. The mean concentrations of TGM, PBM and GOM were 2.55 ± 0.73 ng m−3, 37.78 ± 31.35 pg m−3 and 7.90 ± 7.89 ng m−3. A notable seasonal pattern was observed with higher TGM concentrations in the beginning and end of the ISM. High TGM concentrations were associated with the transport of dry air that carried regional anthropogenic emissions from both domestic and foreign sources. The low PBM and GOM level was attributed to the deposition and wet scavenging during the ISM period. Backward trajectory analysis of air masses associated with TGM levels suggested that both the ISM and westerlies can carry Hg emitted in Burma, Bengal bay and north India to the SAWRS.


2015 ◽  
Vol 15 (2) ◽  
pp. 653-665 ◽  
Author(s):  
H. Zhang ◽  
X. W. Fu ◽  
C.-J. Lin ◽  
X. Wang ◽  
X. B. Feng

Abstract. This study reports the concentrations and potential sources of speciated atmospheric mercury at the Shangri-La Atmosphere Watch Regional Station (SAWRS), a pristine high-altitude site (3580 m a.s.l.) in Tibetan Plateau, China. Total gaseous mercury (TGM, defined as the sum of gaseous elemental mercury, GEM, and gaseous oxidized mercury, GOM), GOM and particulate-bound mercury (PBM) were monitored from November 2009 to November 2010 to investigate the characteristics and potential influence of the Indian summer monsoon (ISM) and the Westerlies on atmospheric transport of mercury. The mean concentrations (± standard deviation) of TGM, PBM and GOM were 2.55 ± 0.73 ng m−3, 38.82 ± 31.26 pg m−3 and 8.22 ± 7.90 pg m−3, respectively. A notable seasonal pattern of TGM concentrations was observed with higher concentrations at the beginning and the end of the ISM season. High TGM concentrations (> 2.5 ng m−3) were associated with the transport of dry air that carried regional anthropogenic emissions from both Chinese domestic and foreign (e.g., Myanmar, Bay of Bengal, and northern India) sources based on analysis of HYSPLIT4 back trajectories. Somewhat lower PBM and GOM levels during the ISM period were attributed to the enhanced wet scavenging. The high GOM and PBM were likely caused by local photo-chemical transformation under low RH and the domestic biofuel burning in cold seasons.


2011 ◽  
Vol 11 (13) ◽  
pp. 6273-6284 ◽  
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
O. Engelsen ◽  
...  

Abstract. Gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Events (AMDE). This study reports the longest time series of GEM, RGM and particle-bound mercury (PHg) concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78° 54′ N, 11° 53′ E). The average concentrations of the complete dataset were 1.6 ± 0.3 ng m−3, 8 ± 13 pg m−3 and 8 ± 25 pg m−3 for GEM, RGM and PHg, respectively. For the complete dataset the atmospheric mercury distribution was 99 % GEM, whereas RGM and PHg constituted <1 %. The study revealed a seasonal distribution of GEM, RGM and PHg previously undiscovered in the Arctic. Increased concentrations of RGM were observed during the insolation period from March through August, while increased PHg concentrations occurred almost exclusively during the spring AMDE period in March and April. The elevated RGM concentrations suggest that atmospheric RGM deposition also occurs during the polar summer. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Still there remain gaps in the knowledge of how RGM and PHg are related in the environment. RGM and PHg accounted for on average about 10 % of the depleted GEM during AMDEs. Although speculative, the fairly low RGM and PHg concentrations supported by the predominance of PHg with respect to RGM and no clear meteorological regime associated with these AMDEs would all suggest the events to be of non-local origin. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations throughout the year.


2010 ◽  
Vol 10 (11) ◽  
pp. 27255-27281
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
L. R. Hole ◽  
...  

Abstract. It is agreed that gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Event (AMDE). RGM is associated with aerosols (PHg) provided that there are sufficient aerosols available for the conversion from RGM to PHg to occur. This study reports the longest time series of GEM, RGM and PHg concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78°54' N, 11°53' E). The average concentrations of the complete dataset were 1.62±0.3 ng m−3, 8±13 pgm−3 and 8±25 pgm−3 for GEM, RGM and PHg, respectively. The study revealed a clear seasonal distribution of GEM, RGM and PHg previously undiscovered. For the complete dataset the atmospheric mercury distribution was 99% GEM, whereas RGM and PHg constituted <1%. Increased PHg concentration occurred exclusively from March through April, and constituted on average 75% of the reactive mercury species in the respective period. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Surprisingly, RGM was not solely formed during the spring AMDE season. Environment Canada's Global/Regional Atmospheric Heavy Metal model (GRAHM) suggested that in situ oxidation of GEM by ozone may be producing the increased RGM concentrations from March through August. Most likely, in situ oxidation of GEM by BrO produced the observed RGM from March through August. The AMDEs occurred from late March until mid June and were thought to be of non-local origin, with GEM being transported to the study site by a wide variety of air masses. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations.


Tellus B ◽  
1993 ◽  
Vol 45 (2) ◽  
pp. 106-119 ◽  
Author(s):  
Petteri Taalas ◽  
Esko KyrÖ ◽  
Ari Supperi ◽  
Victoria Tafuri ◽  
Maximo Ginzburg

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Rute Cesário ◽  
Nelson J. O’Driscoll ◽  
Sara Justino ◽  
Claire E. Wilson ◽  
Carlos E. Monteiro ◽  
...  

In situ air concentrations of gaseous elemental mercury (Hg(0)) and vegetation–atmosphere fluxes were quantified in both high (Cala Norte, CN) and low-to-moderate (Alcochete, ALC) Hg-contaminated saltmarsh areas of the Tagus estuary colonized by plant species Halimione portulacoides (Hp) and Sarcocornia fruticosa (Sf). Atmospheric Hg(0) ranged between 1.08–18.15 ng m−3 in CN and 1.18–3.53 ng m−3 in ALC. In CN, most of the high Hg(0) levels occurred during nighttime, while the opposite was observed at ALC, suggesting that photoreduction was not driving the air Hg(0) concentrations at the contaminated site. Vegetation–air Hg(0) fluxes were low in ALC and ranged from −0.76 to 1.52 ng m−2 (leaf area) h−1 for Hp and from −0.40 to 1.28 ng m−2 (leaf area) h−1 for Sf. In CN, higher Hg fluxes were observed for both plants, ranging from −9.90 to 15.45 ng m−2 (leaf area) h−1 for Hp and from −8.93 to 12.58 ng m−2 (leaf area) h−1 for Sf. Mercury flux results at CN were considered less reliable due to large and fast variations in the ambient air concentrations of Hg(0), which may have been influenced by emissions from the nearby chlor-alkali plant, or historical contamination. Improved experimental setup, the influence of high local Hg concentrations and the seasonal activity of the plants must be considered when assessing vegetation–air Hg(0) fluxes in Hg-contaminated areas.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


Author(s):  
A. Navarro-Sempere ◽  
M. García ◽  
A. S. Rodrigues ◽  
P. V. Garcia ◽  
R. Camarinho ◽  
...  

AbstractMercury accumulation has been proposed as a toxic factor that causes neurodegenerative diseases. However, the hazardous health effects of gaseous elemental mercury exposure on the spinal cord in volcanic areas have not been reported previously in the literature. To evaluate the presence of volcanogenic inorganic mercury in the spinal cord, a study was carried out in São Miguel island (Azores, Portugal) by comparing the spinal cord of mice exposed chronically to an active volcanic environment (Furnas village) with individuals not exposed (Rabo de Peixe village), through the autometallographic silver enhancement histochemical method. Moreover, a morphometric and quantification analysis of the axons was carried out. Results exhibited mercury deposits at the lumbar level of the spinal cord in the specimens captured at the site with volcanic activity (Furnas village). A decrease in axon calibre and axonal atrophy was also observed in these specimens. Given that these are relevant hallmarks in the neurodegenerative pathologies, our results highlight the importance of the surveillance of the health of populations chronically exposed to active volcanic environments.


Sign in / Sign up

Export Citation Format

Share Document