Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

2013 ◽  
Vol 79 ◽  
pp. 317-323 ◽  
Author(s):  
Masahide Aikawa ◽  
Takatoshi Hiraki ◽  
Nobutaka Tomoyose ◽  
Tsuyoshi Ohizumi ◽  
Izumi Noguchi ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
pp. 1947007
Author(s):  
Ebenezer Leke Odekanle ◽  
Chinchong Blessing Bakut ◽  
Abiodun Paul Olalekan ◽  
Roseline Oluwaseun Ogundokun ◽  
Charity O. Aremu ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
C. M. Toledo-Corral ◽  
T. L. Alderete ◽  
M. M. Herting ◽  
R. Habre ◽  
A. K. Peterson ◽  
...  

Abstract Background Hypothalamic-pituitary-adrenal (HPA)-axis dysfunction has been associated with a variety of mental health and cardio-metabolic disorders. While causal models of HPA-axis dysregulation have been largely focused on either pre-existing health conditions or psychosocial stress factors, recent evidence suggests a possible role for central nervous system activation via air pollutants, such as nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM). Therefore, in an observational study of Latino youth, we investigated if monthly ambient NO2, O3, and PM with aerodynamic diameter ≤ 2.5 (PM2.5) exposure were associated with morning serum cortisol levels. Methods In this cross-sectional study, morning serum cortisol level was assessed after a supervised overnight fast in 203 overweight and obese Latino children and adolescents (female/male: 88/115; mean age: 11.1 ± 1.7 years; pre-pubertal/pubertal/post-pubertal: 85/101/17; BMI z-score: 2.1 ± 0.4). Cumulative concentrations of NO2, O3 and PM2.5 were spatially interpolated at the residential addresses based on measurements from community monitors up to 12 months prior to testing. Single and multi-pollutant linear effects models were used to test the cumulative monthly lag effects of NO2, O3, and PM2.5 on morning serum cortisol levels after adjusting for age, sex, seasonality, social position, pubertal status, and body fat percent by DEXA. Results Single and multi-pollutant models showed that higher O3 exposure (derived from maximum 8-h exposure windows) in the prior 1–7 months was associated with higher serum morning cortisol (p < 0.05) and longer term PM2.5 exposure (4–10 months) was associated with lower serum morning cortisol levels (p < 0.05). Stratification by pubertal status showed associations in pre-pubertal children compared to pubertal and post-pubertal children. Single, but not multi-pollutant, models showed that higher NO2 over the 4–10 month exposure period associated with lower morning serum cortisol (p < 0.05). Conclusions Chronic ambient NO2, O3 and PM2.5 differentially associate with HPA-axis dysfunction, a mechanism that may serve as an explanatory pathway in the relationship between ambient air pollution and metabolic health of youth living in polluted urban environments. Further research that uncovers how ambient air pollutants may differentially contribute to HPA-axis dysfunction are warranted.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Hannah Kim ◽  
Seung-Ah Choe ◽  
Ok-Jin Kim ◽  
Sun-Young Kim ◽  
Seulgi Kim ◽  
...  

AbstractBackgroundMounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women.MethodsOur study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting.ResultsThe mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents.ConclusionsIn a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility.


2021 ◽  
Vol 02 ◽  
Author(s):  
Pernille D. Pedersen ◽  
Nina Lock ◽  
Henrik Jensen

: The NOx gasses (NO and NO2) are among the most important air pollutants, due to the toxicity of NO2, as well as the role of NOx in the tropospheric oxidation of Volatile Organic Carbons (VOCs), contributing to the formation of other hazardous air pollutants. Air pollution is one of the biggest health threats world-wide, hence reducing NOx levels is an important objective of the UN sustainable development goals, e.g. #3, “Good health and well-being” and #11 “Sustainable cities and communities”. Photocatalysis using TiO2 and light is a promising technique for removing NOx along with other pollutants, as demonstrated on laboratory scale. Furthermore, a long range of real-life test studies of varying scales have been conducted during the past two decades. The results of these studies have been conflicting, with some studies reporting no effect on the ambient air quality and others reporting significant reductions of NOx level. However, the studies are very difficult to compare and assess due to the very different approaches used, which consequently vary in quality. In this review, we aim to develop a set of objective evaluation criteria to assess the quality of the individual studies in order to simplify the interpretation and comparison of the existing studies. Moreover, we propose some guidelines for future test-studies. Furthermore, the approaches and main conclusions from 23 studies are independently assessed and discussed herein.


2016 ◽  
Vol 124 (8) ◽  
pp. 1276-1282 ◽  
Author(s):  
Louis-Francois Tétreault ◽  
Marieve Doucet ◽  
Philippe Gamache ◽  
Michel Fournier ◽  
Allan Brand ◽  
...  

2016 ◽  
Author(s):  
Karin Haglund ◽  
Björn Claremar ◽  
Anna Rutgersson

Abstract. The shipping sector contributes significantly to increasing emissions of air pollutants. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and deposition of sulphur, nitrogen and particulate matter from the international maritime sector in the Baltic Sea and the North Sea have been made for the years 2009 to 2013. In some areas in the Baltic Sea region the contribution of sulphur dioxide, nitrogen oxide and nitrogen dioxide from international shipping represented up to 80 % of the total near surface concentration of the pollutants. Contributions from shipping of PM2,5 and PM10 were calculated to a maximum of 21 % and 13 % respectively. The contribution of wet deposition of sulphur from shipping was maximum 29 % of the total wet deposition, and for dry deposition the contribution from shipping was maximum 84 %. The highest percentage contribution of wet deposition of nitrogen from shipping reached 28 % and for dry deposition 47 %. The highest concentrations and deposition of the pollutants in the study were found near large ports and shipping lanes. High concentrations were also found over larger areas at sea and over land where many people are exposed. With enhanced regulations for sulphur content in maritime fuel, the cleaning of exhausts through scrubbers has become a possible economic solution. Wet scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from open-loop scrubber water along the shipping lanes, based on different assumptions about sulphur content in fuel and scrubber usage has been assessed. Shipping is expected to increase globally and in the Baltic Sea region, deposition of sulphur due to shipping will depend on traffic density, emission regulations and technology choices for the emission controls. To evaluate future changes scenarios are developed considering the amount of scrubber technology used. The increase in deposition for the different scenarios differs slightly for the basins in the Baltic Sea. The proportion of ocean acidifying sulphur from ships increases when taking scrubber water into account and the major reason to increasing acidifying nitrogen from ships are due to increasing ship traffic. This study also generates a database of scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


Sign in / Sign up

Export Citation Format

Share Document