Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China

2019 ◽  
Vol 212 ◽  
pp. 54-64 ◽  
Author(s):  
Zhuzi Zhao ◽  
Junji Cao ◽  
Judith C. Chow ◽  
John G. Watson ◽  
Antony L-W. Chen ◽  
...  
2019 ◽  
Vol 46 (9) ◽  
pp. 4962-4970 ◽  
Author(s):  
Qiyuan Wang ◽  
Yongming Han ◽  
Jianhuai Ye ◽  
Suixin Liu ◽  
Siwatt Pongpiachan ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 645
Author(s):  
Zhuzi Zhao ◽  
Qiyuan Wang ◽  
Li Li ◽  
Yongming Han ◽  
Zhaolian Ye ◽  
...  

The Tibetan Plateau (TP) is one of the world’s most sensitive areas for climate change. Previous studies have revealed that air pollutants emitted from South and Southeast Asia can be transported to and have a negative impact on the TP. However, the majority of the investigators have focused on the pollutant transport processes from South Asian regions (i.e., India and Bangladesh) and parts of Southeast Asia, while the regions adjacent to the southeast fringe of the TP (i.e., Burma and the Sino-Burmese border) have been neglected. Here, fine particulate matter (PM2.5) samples were collected during the period 11 March to 13 May 2018 at Gaomeigu, a high-altitude remote site in the southeastern margin of the TP. Characteristics, sources of PM2.5, and the potential source regions for different chemical components were investigated. During the sampling time, PM2.5 mass loadings ranged from 3.79 to 54.57 µg m−3, with an arithmetic mean concentration of 20.99 ± 9.80 µg m−3. In general, major peaks of organic carbon (OC) and elemental carbon (EC) always coincided with high loadings of K+ and NO3−, which implies that common combustion sources caused these species’ concentrations to covary, while the daily variations of crustal elements showed different trends with the other chemical compositions, suggesting different source regions for crustal materials. Five source factors were identified as possible aerosol sources for PM2.5 by positive matrix factorization (PMF). They are the mining industry (5.3%), characterized by heavy metal elements; secondary formation (18.8%), described by the high concentrations of NH4+ and SO42−; traffic-related emissions (26.7%), dominated by carbonaceous species (especially soot-EC) and some metal elements; fugitive dust (15.2%), represented by crustal elements (Ti, Fe, and Mn), Ca2+, and Mg2+; and biomass burning (34.0%), which is typified by high concentrations of K+, NO3−, char-EC, primary OC, and secondary OC. The concentration-weighted trajectory (CWT) analysis results showed that the northeast part of Burma is the potential source region for high concentrations of EC and NO3− due to biomass burning emissions, while the tourism industry surrounding Gaomeigu gave strong grid cell values of SO42− as well as moderate values of EC and NO3−. Moreover, the mining industry in the southwest direction of Gaomeigu has important impacts on the zinc concentrations.


2017 ◽  
Vol 71 (1) ◽  
Author(s):  
Elisabeth Hsu ◽  
Franz K. Huber ◽  
Caroline S. Weckerle

AbstractThe Shuhi of Muli County, Sichuan Province, are one of multiple ethnic groups inhabiting the river gorges of the Qinghai-Gansu-Sichuan corridor between the Tibetan plateau and the Chinese lowlands. The Shuhi have grown paddy rice since times immemorial at an unusually high altitude (ca. 2,300 m above sea level). This article aims to explain this conundrum not merely through the ecology (as is common among Tibetan area specialists), but by researching the cultivation and consumption of rice as a historically-evolved cultural practice. According to a recently formulated agro-archaeological hypothesis regarding the macro-region of Eurasia, it is possible to identify two supra-regional culture complexes distinguished by their respective culinary technologies: rice-boiling versus wheat-grinding-and-baking. The hypothesis posits that the fault line between the two supra-regional cultural complexes is precisely along this river gorges corridor. In this article we provide support for this hypothesis arguing that Shuhi ritual and kinship practices have much affinity with those of other rice-boiling peoples in Southeast Asia, whereas certain of their current religious practices are shared with the wheat-grinding Tibetans.


Lithosphere ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 3-18
Author(s):  
Loraine Gourbet ◽  
Rong Yang ◽  
Maria Giuditta Fellin ◽  
Jean-Louis Paquette ◽  
Sean D. Willett ◽  
...  

Abstract We performed apatite and zircon (U-Th)/He dating on a granitic pluton that has been offset by ∼10 km by motion on the sinistral strike-slip Xiangcheng fault in SW Sichuan, SE Tibetan plateau, where the Shuoqu River incises a deep valley before joining the upper Yangtze River. Mean ZHe cooling ages range from 49.5 ± 2.2 Ma to 68.6 ± 6.0 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30.6 ± 1.4 Ma to 40.6 ± 2.7 Ma, whereas samples at lower elevations range from 9.8 ± 1.3 Ma to 14.6 ± 2.7 Ma. In the same region, Cenozoic continental sediments are exposed on the flanks of deep valleys. They consist of unsorted conglomerates and sandstones that partly fill a paleotopography. The sediments were deposited during an episode of rapid sedimentation, followed by incision that varies between 0.5 and 1.2 km. Thermal and exhumational modeling of the granite thermochronometric data indicates rapid cooling during the middle Miocene that was likely related to fluvial incision. Our findings suggest that the upper Yangtze River and its tributary (Shuoqu) were connected by the middle Miocene. Our modeling also supports the idea that the exhumation pattern during the Cenozoic in the southeastern margin of the Tibetan Plateau is spatially and temporally heterogeneous.


Sign in / Sign up

Export Citation Format

Share Document