Observation based study on atmospheric oxidation capacity in Shanghai during late-autumn: Contribution from nitryl chloride

2021 ◽  
pp. 118902
Author(s):  
Shengrong Lou ◽  
Zhaofeng Tan ◽  
Guicheng Gan ◽  
Jun Chen ◽  
Haichao Wang ◽  
...  
2021 ◽  
Author(s):  
Yihang Yu ◽  
Peng Cheng ◽  
Huirong Li ◽  
Wenda Yang ◽  
Baobin Han ◽  
...  

<p>Nitrous acid (HONO) can produce hydroxyl radicals (OH) by photolysis and plays an important role in atmospheric photochemistry. Over the years, high concentrations of HONO have been found in the Pearl River Delta region (PRD), which may be one of the reasons for the high atmospheric oxidation capacity. A comprehensive atmospheric observation was conducted at an urban site in Guangzhou from 27 September to 9 November 2018. During the period, HONO ranged from 0.02 to 4.43 ppbv with an average of 0.74±0.70 ppbv. The combustion emission ratio (HONO/NOx) of 0.9±0.4% was derived from 11 fresh plumes. The primary emission rate of HONO during night was calculated with the emission source inventory data to be between 0.04±0.02 and 0.30±0.15 ppbv/h. And the HONO produced by the homogeneous reaction of OH+NO at night was 0.26±0.08 ppbv/h, which can be seemed as secondary results from primary emission. They were both much higher than the increase rate of HONO (0.02 ppbv/h) during night. Soil emission rate of HONO at night was calculated to be 0.019±0.0003 ppbv/h. Deposition was the dominant removal process of HONO during night, and a deposition rate of at least 2.5 cm/s is required to balance the direct emissions and OH+NO reaction. Correlation analysis shows that NH<sub>3</sub> and relative humidity (RH) may participate in the heterogeneous transformation from NO<sub>2</sub> to HONO during night. In the daytime, the average primary emission P<sub>emis</sub> was 0.12±0.01 ppbv/h, and the homogeneous reaction P<sub>OH+NO</sub> was 0.79±0.61 ppbv/h, which was even larger than the unknown sources P<sub>Unknown</sub> (0.65±0.46 ppbv/h). The results showed that the direct and indirect contributions of primary emission to HONO are great at the site, both during daytime and nighttime. Similar to previous studies, P<sub>Unknown</sub> was suggested to be related to the photo-enhanced reaction of NO<sub>2</sub>. The mean OH production rates by photolysis of HONO and O<sub>3</sub> were 3.7×10<sup>6</sup> cm<sup>-3</sup>·s<sup>-1</sup> and 4.9×10<sup>6</sup> cm<sup>-3</sup>·s<sup>-1</sup>, respectively. We further studied the impact of HONO on the atmospheric oxidation by a Master Chemical Mechanism (MCM) box model. When constraining observed HONO in the model, OH and O<sub>3 </sub>increased 59% and 68.8% respectively, showing a remarkable contribution of HONO to the atmospheric oxidation of Guangzhou.</p><p> </p>


2018 ◽  
Author(s):  
Zhaofeng Tan ◽  
Keding Lu ◽  
Meiqing Jiang ◽  
Rong Su ◽  
Hongli Wang ◽  
...  

Abstract. Atmospheric oxidation capacity is the core of converting fresh-emitted substances to secondary pollutants. In this study, we present the in-situ measurements at four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chongqing) in China during photochemical polluted seasons. The atmospheric oxidation capacity is evaluated using an observational-based model with the input of radical chemistry precursor measurements. The radical budget analysis illustrates the importance of HONO and HCHO photolysis, which contribute nearly half of the total radical primary sources. The radical propagation is efficient due to abundant of NO in the urban environments. Hence, the production rate of secondary pollutants, i.e. ozone and fine particle precursors (H2SO4, HNO3, and ELVOCs) is fast resulting in secondary air pollution. The ozone budget demonstrates that strong ozone production occurs in the urban area which results in fast ozone concentration increase locally and further transported to downwind areas. On the other hand, the O3-NOx-VOC sensitivity tests show that ozone production is VOC-limited, among which alkenes and aromatics should be first mitigated for ozone pollution control in the presented four megacities. However, NOx emission control will lead to more server ozone pollution due to the drawback-effect of NOx reduction. For fine particle pollution, the role of HNO3−NO3− partitioning system is investigated with a thermal dynamic model (ISORROPIA2) due to the importance of particulate nitrate during photochemical polluted seasons. The strong nitrate acid production converts efficiently to nitrate particles due to high RH and ammonium-rich conditions during photochemical polluted seasons. This study highlights the efficient radical chemistry maintains the atmospheric oxidation capacity in Chinese megacities, which results in secondary pollutions characterized by ozone and fine particles.


2020 ◽  
Author(s):  
Jun Zheng ◽  
Xiaowen Shi ◽  
Yan Ma

<p>A suite of instruments were deployed to simultaneously measure nitrous acid (HONO), nitrogen oxides (NO<sub>x</sub>= NO + NO<sub>2</sub>), carbon monoxide (CO), ozone (O<sub>3</sub>), volatile organic compounds (VOCs, including formaldehyde (HCHO)) and meteorological parameters near a typical industrial zone in Nanjing of the Yangtze River Delta region, China. High levels of HONO were detected using a wet chemistry-based method. HONO ranged from 0.03-7.04 ppbv with an average of 1.32 ±0.92 ppbv. Elevated daytime HONO was frequently observed with a minimum of several hundreds of pptv on average, which cannot be explained by the homogeneous OH + NO reaction (P<sub>OH+NO</sub>) alone, especially during periods with high loadings of particulate matters (PM<sub>2.5</sub>). The HONO chemistry and its impact on atmospheric oxidation capacity in the study area were further investigated using a MCM-box model. The results show that the average hydroxyl radical (OH) production rate was dominated by the photolysis of HONO (7.13×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), followed by ozonolysis of alkenes (3.94×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), photolysis of O<sub>3</sub>(2.46×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>) and photolysis of HCHO (1.60×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), especially within the plumes originated from the industrial zone. The observed similarity between HONO/NO<sub>2</sub>and HONO in diurnal profiles strongly suggests that HONO in the study area was likely originated from NO<sub>2</sub>heterogeneous reactions. The averagenighttimeNO<sub>2</sub>to HONO conversion ratewas determined to be ~0.9% hr<sup>-1</sup>. Good correlation between nocturnal HONO/NO<sub>2</sub>and the products of particle surface area density (S/V) and relative humidity (RH), S/V×RH,supports the heterogeneous NO<sub>2</sub>/H<sub>2</sub>O reaction mechanism. The other HONO source, designated as P<sub>unknonwn</sub>, was about twice as much as P<sub>OH+NO </sub>on average and displayed a diurnal profile with an evidently photo-enhanced feature, i.e., photosensitized reactions of NO<sub>2</sub>may be an important daytime HONO source. Nevertheless, our results suggest that daytime HONO formation was mostly due to the light-induced conversion of NO<sub>2</sub>on aerosol surfaces but heterogeneous NO<sub>2</sub>reactions on ground surface dominated nocturnal HONO production. Concurred elevated HONO and PM<sub>2.5</sub>levels strongly indicate that high HONO may increase the atmospheric oxidation capacity and further promote the formation of secondary aerosols, which may in turn synergistically boost NO<sub>2</sub>/HONO conversion by providing more heterogeneous reaction sites.</p>


2010 ◽  
Vol 44 (33) ◽  
pp. 4107-4115 ◽  
Author(s):  
Jingqiu Mao ◽  
Xinrong Ren ◽  
Shuang Chen ◽  
William H. Brune ◽  
Zhong Chen ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 5457-5475
Author(s):  
Jun Zheng ◽  
Xiaowen Shi ◽  
Yan Ma ◽  
Xinrong Ren ◽  
Halim Jabbour ◽  
...  

Abstract. A suite of instruments was deployed to simultaneously measure nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), carbon monoxide (CO), ozone (O3), volatile organic compounds (VOCs – including formaldehyde, HCHO) and meteorological parameters near a typical industrial zone in Nanjing in the Yangtze River Delta (YRD) region of China from 1 to 31 December 2015. High levels of HONO were detected using a wet-chemistry-based method. HONO ranged from 0.03 to 7.04 ppbv with an average of 1.32±0.92 ppbv. Elevated daytime HONO was frequently observed with a minimum of several hundred parts per trillion by volume (pptv) on average, which cannot be explained by the homogeneous OH + NO reaction (POH+NO) and primary emissions (Pemission), especially during periods with high particulate matter (PM2.5) loadings. HONO chemistry and its impact on the atmospheric oxidation capacity in the study area were further investigated using a Master Chemical Mechanism (MCM) box model. The results show that the average hydroxyl radical (OH) production rate was dominated by the photolysis of HONO (7.13×106 molec. cm−3 s−1), followed by the ozonolysis of alkenes (3.94×106 molec. cm−3 s−1), the photolysis of O3 (2.46×106 molec. cm−3 s−1) and the photolysis of HCHO (1.60×106 molec. cm−3 s−1) during the campaign period, especially within plumes that originated from the industrial zone. Model simulations indicated that heterogeneous chemistry played an important role in HONO formation. The average nighttime NO2 to HONO conversion rate was determined to be ∼0.8 % h−1. A good correlation between nocturnal HONO∕NO2 and the product of particle surface area density (S∕V) and relative humidity (RH), S/V⋅RH, supports the heterogeneous NO2∕H2O reaction mechanism. The other HONO source, designated as Punknonwn, was about twice as high as POH+NO on average and displayed a diurnal profile with an evidently photo-enhanced feature, i.e., photosensitized reactions of NO2 may be an important daytime HONO source. Nevertheless, our results suggest that daytime HONO formation was mostly due to the light-induced conversion of NO2 on aerosol surfaces, whereas heterogeneous NO2 reactions on the ground surface dominated nocturnal HONO production. Our study indicated that an elevated PM2.5 level during haze events can promote the conversion of NO2 to HONO by providing more heterogeneous reaction sites, thereby increasing the atmospheric oxidation capacity, which may further promote the formation of secondary air pollutants. Highlights: High levels of HONO, with an average of 1.32±0.92 ppbv, were observed near one of the largest industrial zones in the YRD region of China. HONO photolysis and alkene ozonolyses contributed the most to OH production and, hence, the atmospheric oxidation capacity. High loading of PM2.5 provided additional reaction surfaces for HONO formation. Heterogeneous formation mechanisms were the most important daytime HONO sources and were further enhanced by sunlight.


Sign in / Sign up

Export Citation Format

Share Document