Characterization of warm season convective systems over US in terms of Cloud to Ground lightning, cloud kinematics, and precipitation

2009 ◽  
Vol 91 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Alemu Tadesse ◽  
Emmanouil N. Anagnostou
2010 ◽  
Vol 25 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Shih-Yu Wang ◽  
Adam J. Clark

Abstract Using a composite procedure, North American Mesoscale Model (NAM) forecast and observed environments associated with zonally oriented, quasi-stationary surface fronts for 64 cases during July–August 2006–08 were examined for a large region encompassing the central United States. NAM adequately simulated the general synoptic features associated with the frontal environments (e.g., patterns in the low-level wind fields) as well as the positions of the fronts. However, kinematic fields important to frontogenesis such as horizontal deformation and convergence were overpredicted. Surface-based convective available potential energy (CAPE) and precipitable water were also overpredicted, which was likely related to the overprediction of the kinematic fields through convergence of water vapor flux. In addition, a spurious coherence between forecast deformation and precipitation was found using spatial correlation coefficients. Composite precipitation forecasts featured a broad area of rainfall stretched parallel to the composite front, whereas the composite observed precipitation covered a smaller area and had a WNW–ESE orientation relative to the front, consistent with mesoscale convective systems (MCSs) propagating at a slight right angle relative to the thermal gradient. Thus, deficiencies in the NAM precipitation forecasts may at least partially result from the inability to depict MCSs properly. It was observed that errors in the precipitation forecasts appeared to lag those of the kinematic fields, and so it seems likely that deficiencies in the precipitation forecasts are related to the overprediction of the kinematic fields such as deformation. However, no attempts were made to establish whether the overpredicted kinematic fields actually contributed to the errors in the precipitation forecasts or whether the overpredicted kinematic fields were simply an artifact of the precipitation errors. Regardless of the relationship between such errors, recognition of typical warm-season environments associated with these errors should be useful to operational forecasters.


2007 ◽  
Vol 55 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Eli Ana Traversim Gomes ◽  
Viviane Severiano dos Santos ◽  
Denise Rivera Tenenbaum ◽  
Maria Célia Villac

Much time and resources have been invested in understanding plankton dynamics in Guanabara Bay (Brazil), but no attention has been devoted to the protozooplankton. To fulfill this lacuna, abundance and composition of protozooplankton were investigated from January to December - 2000 in fortnightly surface water samplings at two distinct water quality sites (Urca - closer to the bay entrance, more saline and cleaner waters; Ramos - inner reaches, hypereutrophic waters). The density at Urca (10³ - 10(5) cell.l-1) was one to three orders of magnitude lower than at Ramos (10(4) - 10(5) cell.l-1). A seasonal trend for nanoplankton and protozooplankton was more evident at Urca, but both sites had lower densities during the colder period. Small heterotrophic dinoflagellates (20-30 mm) were dominant in over 50% of the samples. The protozooplankton abundance and composition reflected the distinct trophic conditions states found at the bay. During the wet-warm season, non-oligotrich ciliates were representative of Ramos site with Gymnodiniaceae dinoflagellates, while tintinnids and heterotrophic dinoflagellates were predominantly found at Urca mainly during the dry-cold season. This first descriptive study towards the understanding of the intricate relationships among the microbial food web components reveals that protozooplankton can be a good indicator of water quality conditions at the bay.


2013 ◽  
Vol 141 (5) ◽  
pp. 1648-1672 ◽  
Author(s):  
Kelly M. Keene ◽  
Russ S. Schumacher

Abstract The accurate prediction of warm-season convective systems and the heavy rainfall and severe weather associated with them remains a challenge for numerical weather prediction models. This study looks at a circumstance in which quasi-stationary convection forms perpendicular to, and above the cold-pool behind strong bow echoes. The authors refer to this phenomenon as a “bow and arrow” because on radar imagery the two convective lines resemble an archer’s bow and arrow. The “arrow” can produce heavy rainfall and severe weather, extending over hundreds of kilometers. These events are challenging to forecast because they require an accurate forecast of earlier convection and the effects of that convection on the environment. In this study, basic characteristics of 14 events are documented, and observations of 4 events are presented to identify common environmental conditions prior to the development of the back-building convection. Simulations of three cases using the Weather Research and Forecasting Model (WRF) are analyzed in an attempt to understand the mechanisms responsible for initiating and maintaining the convective line. In each case, strong southwesterly flow (inducing warm air advection and gradual isentropic lifting), in addition to directional and speed convergence into the convective arrow appear to contribute to initiation of convection. The linear orientation of the arrow may be associated with a combination of increased wind speeds and horizontal shear in the arrow region. When these ingredients are combined with thermodynamic instability, there appears to be a greater possibility of formation and maintenance of a convective arrow behind a bow echo.


2021 ◽  
Vol 13 (21) ◽  
pp. 4289
Author(s):  
Yang Li ◽  
Yubao Liu ◽  
Yun Chen ◽  
Baojun Chen ◽  
Xin Zhang ◽  
...  

The spatiotemporal statistical characteristics of warm-season deep convective systems, particularly deep convective systems initiation (DCSI), over China and its vicinity are investigated using Himawari-8 geostationary satellite measurements collected during April-September from 2016 to 2020. Based on a satellite brightness temperature multiple-threshold convection identification and tracking method, a total of 47593 deep convective systems with lifetimes of at least 3 h were identified in the region. There are three outstanding local maxima in the region, located in the southwestern, central and eastern Tibetan Plateau and Yunnan-Guizhou Plateau, followed by a region of high convective activities in South China. Most convective systems are developed over the Tibetan Plateau, predominantly eastward-moving, while those developed in Yunnan-Guizhou Plateau and South China mostly move westward and southwestward. The DSCI occurrences become extremely active after the onset of the summer monsoon and tend to reach a maximum in July and August, with a diurnal peak at 11–13 LST in response to the enhanced solar heating and monsoon flows. Several DCSI hotspots are identified in the regions of inland mountains, tropical islands and coastal mountains during daytime, but in basins, plains and coastal areas during nighttime. DCSI over land and oceans exhibits significantly different sub-seasonal and diurnal variations. Oceanic DCSI has an ambiguous diurnal variation, although its sub-seasonal variation is similar to that over land. It is demonstrated that the high spatiotemporal resolution satellite dataset provides rich information for understanding the convective systems over China and vicinity, particularly the complex terrain and oceans where radar observations are sparse or none, which will help to improve the convective systems and initiation nowcasting.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2860
Author(s):  
Andrew R. Goenner ◽  
Kristie J. Franz ◽  
William A. Gallus Jr ◽  
Brett Roberts

Probabilistic streamflow forecasts using precipitation derived from ensemble-based Probabilistic Quantitative Precipitation Forecasts (PQPFs) are examined. The PQPFs provide rainfall amounts associated with probabilities of exceedance for all grid points, which are averaged to the watershed scale for input to the operational Sacramento Soil Moisture Accounting hydrologic model to generate probabilistic streamflow predictions. The technique was tested using both the High-Resolution Rapid Refresh Ensemble (HRRRE) and the High-Resolution Ensemble Forecast version 2.0 (HREF) for 11 river basins across the upper Midwest for 109 cases. The resulting discharges associated with low probability of exceedance values were too large; no events were observed having discharges above the 10% exceedance value predicted from the technique applied to both ensembles, and no events were observed having discharges above the 25% exceedance value from the HREF-based forecast. The large differences are due to using the same precipitation exceedance value at all points; it is unlikely that all watershed points would experience the heavy rainfall associated with the 5% probability of exceedance. The technique likely can be improved through calibration of the basin-average precipitation forecasts based on typical distributions of precipitation within the convective systems that dominate warm-season precipitation events or calibration of the resulting probabilistic discharge forecasts.


SOLA ◽  
2015 ◽  
Vol 11 (0) ◽  
pp. 177-180 ◽  
Author(s):  
Namiko Sakurai ◽  
Shingo Shimizu ◽  
Yukari Shusse ◽  
Shin-ichi Suzuki ◽  
Takeshi Maesaka ◽  
...  

2003 ◽  
Vol 131 (10) ◽  
pp. 2417-2427 ◽  
Author(s):  
Walter A. Lyons ◽  
Thomas E. Nelson ◽  
Earle R. Williams ◽  
Steven A. Cummer ◽  
Mark A. Stanley

2003 ◽  
Vol 84 (6) ◽  
pp. 767-776 ◽  
Author(s):  
V. A. Rakov

Characteristics of lightning discharges that transport either positive charge or both positive and negative charges to the ground are reviewed. These are termed positive and bipolar lightning discharges, respectively. Different types of positive and bipolar lightning are discussed. Although positive lightning discharges account for 10% or less of global cloud-to-ground lightning activity, there are five situations that appear to be conducive to the more frequent occurrence of positive lightning. These situations include 1) the dissipating stage of an individual thunderstorm, 2) winter thunderstorms, 3) trailing stratiform regions of mesoscale convective systems, 4) some severe storms, and 5) thunderclouds formed over forest fires or contaminated by smoke. The highest directly measured lightning currents (near 300 kA) and the largest charge transfers (hundreds of coulombs or more) are thought to be associated with positive lightning. Two types of impulsive positive current waveforms have been observed. One type is characterized by rise times of the order of 10 μs, comparable to those for first strokes in negative lightning, and the other type is characterized by considerably longer rise times, up to hundreds of microseconds. The latter waveforms are apparently associated with very long, 1–2 km, upward negative connecting leaders. The positive return-stroke speed is of the order of 108 m s−1. Positive flashes are usually composed of a single stroke. Positive return strokes often appear to be preceded by significant in-cloud discharge activity, then followed by continuing currents, and involve long horizontal channels. In contrast to negative leaders, which are always optically stepped when they propagate in virgin air, positive leaders seem to be able to move either continuously or in a stepped fashion. The reported percentage of bipolar flashes in summer storms ranges from 6% to 14% and from 5% to 33% in winter storms. Bipolar lightning discharges are usually initiated by upward leaders from tall objects. It appears that positive and negative charge sources in the cloud are tapped by different upward branches of the bipolar-lightning channel.


Sign in / Sign up

Export Citation Format

Share Document