Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events

2016 ◽  
Vol 174-175 ◽  
pp. 52-61 ◽  
Author(s):  
Kirpa Ram ◽  
Sunita Singh ◽  
M.M. Sarin ◽  
A.K. Srivastava ◽  
S.N. Tripathi
2019 ◽  
Author(s):  
Venugopalan Nair Jayachandran ◽  
Surendran Nair Suresh Babu ◽  
Aditya Vaishya ◽  
Mukunda M. Gogoi ◽  
Vijayakumar S. Nair ◽  
...  

Abstract. Concurrent measurements of the altitude profiles of cloud condensation nuclei (CCN) concentration, as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties (scattering and absorption coefficients) were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) covering coastal, urban and arid environments, just prior to the onset of the Indian summer monsoon (ISM) of 2016, under the aegis of the SWAAMI - RAWEX campaign. In general, the CCN concentration has been highest in the Central IGP, decreasing spatially from east to west above the planetary boundary layer (PBL), which is ~ 1.5 km for the IGP during pre-monsoon. Despite of this, the CCN activation efficiency at 0.4 % supersaturation has been, interestingly, the highest over the eastern IGP (~ 72 %), followed by the west (~ 61 %), and has been the least over the central IGP (~ 24 %) within the PBL. In general, higher activation efficiency is noticed above the PBL than below it. The Central IGP showed remarkably low CCN activation efficiency at all the heights, which appears to be associated with high black carbon (BC) mass concentration there, indicating the role of anthropogenic sources in suppressing the CCN efficiency. First ever CCN measurements over the western IGP, encompassing "The Great Indian desert", show high CCN efficiency, ~ 61 % at 0.4 % supersaturation, indicating hygroscopic nature of the dust. The vertical structure of CCN properties is found to be airmass-dependent; with higher activation efficiency even over the central IGP during the prevalence of marine airmass. Precipitation episodes seem to reduce the CCN activation efficiency below cloud level. An empirical relation has emerged between the CCN concentration and the scattering aerosol index (AI), which would facilitate prediction of CCN from aerosol optical properties.


2020 ◽  
Vol 20 (1) ◽  
pp. 561-576 ◽  
Author(s):  
Venugopalan Nair Jayachandran ◽  
Surendran Nair Suresh Babu ◽  
Aditya Vaishya ◽  
Mukunda M. Gogoi ◽  
Vijayakumar S. Nair ◽  
...  

Abstract. Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCN), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties (scattering and absorption coefficients) were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the Indian summer monsoon (ISM) of 2016. The experiment was conducted under the aegis of the combined South-West Asian Aerosol–Monsoon Interactions and Regional Aerosol Warming Experiment (SWAAMI–RAWEX) campaign. The measurements covered coastal, urban and arid environments. In general, the CCN concentration was highest in the central IGP, decreasing spatially from east to west above the planetary boundary layer (PBL), which is ∼1.5 km for the IGP during pre-monsoon period. Despite this, the CCN activation efficiency at 0.4 % supersaturation was, interestingly, the highest over the eastern IGP (∼72 %), followed by that in the west (∼61 %), and it was the least over the central IGP (∼24 %) within the PBL. In general, higher activation efficiency is noticed above the PBL than below it. The central IGP showed remarkably low CCN activation efficiency at all altitudes, which appears to be associated with high black carbon (BC) mass concentration there, indicating the role of anthropogenic sources in suppressing the CCN efficiency. These first-ever CCN measurements over the western IGP, encompassing “the Great Indian Desert” also known as “the Thar Desert”, showed high CCN efficiency, ∼61 % at 0.4 % supersaturation, indicating the hygroscopic nature of the dust. The vertical structure of CCN properties is found to be air mass dependent, with higher activation efficiency even over the central IGP during the prevalence of marine air mass. Wet scavenging associated with precipitation episodes seems to have reduced the CCN activation efficiency below cloud level. An empirical relation has emerged between the CCN concentration and the scattering aerosol index (AI), which would facilitate the prediction of CCN from aerosol optical properties.


2020 ◽  
Vol 716 ◽  
pp. 137102 ◽  
Author(s):  
Archita Rana ◽  
Supriya Dey ◽  
Prashant Rawat ◽  
Arya Mukherjee ◽  
Jingying Mao ◽  
...  

2012 ◽  
Vol 5 (6) ◽  
pp. 1543-1564 ◽  
Author(s):  
S. Stromatas ◽  
S. Turquety ◽  
L. Menut ◽  
H. Chepfer ◽  
J. C. Péré ◽  
...  

Abstract. We present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles (β') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties (β') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
B. P. Singh ◽  
A. K. Srivastava ◽  
S. Tiwari ◽  
S. Singh ◽  
R. K. Singh ◽  
...  

During Diwali festival, extensive burning of crackers and fireworks is made. Weeklong intensive observational campaign for aerosol study was carried out at a representative urban location in the eastern Indo-Gangetic Plain (IGP), Varanasi (25.3°N, 83.0°E), from October 29 to November 04, 2005 (Diwali on November 01, 2005), to investigate behavioral change of aerosol properties and radiative forcing between firework affected and nonaffected periods. Results show a substantial increase (~27%) in aerosol optical depth, aerosol absorption coefficients, and aerosol scattering coefficients during affected period as compared to non-affected periods. Magnitudes of radiative forcing at top of atmosphere during affected and non-affected periods are found to be +10 ± 1 and +12 ± 1 Wm−2, respectively, which are −31 ± 7 and −17 ± 5 Wm−2, respectively, at surface. It suggests an additional cooling of ~20% at top of atmosphere, ~45% cooling at surface, and additional atmospheric heating of 0.23 Kday−1during fireworks affected period, which is ~30% higher than the non-affected period average.


2016 ◽  
Author(s):  
M. Ealo ◽  
A. Alastuey ◽  
A. Ripoll ◽  
N. Pérez ◽  
M. C. Minguillón ◽  
...  

Abstract. The study of Saharan dust events (SDE) and biomass burning (BB) emissions are both topic of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near real-time in situ aerosol optical measurements for the detection of these atmospheric events in the Western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent, and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDE and BB detection is presented and discussed. The detection of Saharan dust events (SDE) by means of the SSAAE parameter and Ångström matrix depended on the altitude of the measurement station, and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85% of SDE compared with 50% at MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDE. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDE. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDE favored the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5, and 0.5 and 0.75, respectively, during SDE. Based on the Aethalometer model, biomass burning (BB) contribution to equivalent black carbon (BC) accounted for 36% and 40% at MSY and MSA respectively. Linear relationships were found between AAE and %BCbb, with AAE values reaching around 1.5 when %BCbb was higher than 50%. BB contribution to organic matter (OM) at MSY was around 30%. Thus FF combustion sources showed important contributions to both BC and OM in the region under study. Results for OM source apportionment showed good agreement with simultaneous biomass burning organic aerosol (BBOA) and hydrocarbon-like organic aerosol (HOA) calculated from Positive Matrix Factorization (PMF) applied to simultaneous Aerosol Mass Spectrometer (ACSM) measurements. A wildfire episode was identified at MSY, showing AAE values up to 2 when daily BB contributions to BC and OM were 73% and 78% respectively.


2018 ◽  
Vol 18 (23) ◽  
pp. 17669-17685 ◽  
Author(s):  
Aditya Vaishya ◽  
Surendran Nair Suresh Babu ◽  
Venugopalan Jayachandran ◽  
Mukunda M. Gogoi ◽  
Naduparambil Bharathan Lakshmi ◽  
...  

Abstract. Measurements of the vertical profiles of the optical properties (namely the extinction coefficient and scattering and absorption coefficients respectively σext ∕ σscat ∕ σabs) of aerosols have been made across the Indo-Gangetic Plain (IGP) using an instrumented aircraft operated from three base stations – Jodhpur (JDR), representing the semi-arid western IGP; Varanasi (VNS), the central IGP characterized by significant anthropogenic activities; and the industrialized coastal location in the eastern end of the IGP (Bhubaneswar, BBR) – just prior to the onset of the Indian summer monsoon. The vertical profiles depicted region-specific absorption characteristics, while the scattering characteristics remained fairly uniform across the region, leading to a west–east gradient in the vertical structure of single-scattering albedo (SSA). Integrated from near the ground to 3 km, the highest absorption coefficient and hence the lowest SSA occurred in the central IGP (Varanasi). Size distribution, inferred from the spectral variation of the scattering coefficient, showed a gradual shift from coarse-particle dominance in the western IGP to strong accumulation dominance in the eastern coast with the central IGP coming in between, arising from a change in the aerosol type from a predominantly natural (dust and sea salt) type in the western IGP to a highly anthropogenic type (industrial emissions, fossil fuel and biomass combustion) in the eastern IGP, with the central IGP exhibiting a mixture of both. Aerosol-induced short-wave radiative forcing, estimated using altitude-resolved SSA information, revealed significant atmospheric warming in the central IGP, while a top-of-atmosphere cooling is seen, in general, in the IGP. Atmospheric heating rate profiles, estimated using altitude-resolved SSA and column-averaged SSA, revealed considerable underestimation in the latter case, emphasizing the importance and necessity of having altitude-resolved SSA information as against a single value for the entire column.


2019 ◽  
Vol 50 (4) ◽  
pp. 620-633 ◽  
Author(s):  
M. S. Aswathy ◽  
M. Vinoth ◽  
Achal Mittal ◽  
Siddharth Behera

Sign in / Sign up

Export Citation Format

Share Document