Variability of hourly precipitation during the warm season over eastern China using gauge observations and ERA5

2021 ◽  
pp. 105872
Author(s):  
Shun Qin ◽  
Kaicun Wang ◽  
Guocan Wu ◽  
Zhanshan Ma
2015 ◽  
Vol 36 (8) ◽  
pp. 3148-3160 ◽  
Author(s):  
Deshuai Li ◽  
Jianhua Sun ◽  
Shenming Fu ◽  
Jie Wei ◽  
Shigong Wang ◽  
...  

Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Joowan Kim ◽  
Eun-Chul Chang ◽  
Jung-Hoon Kim ◽  
...  

AbstractThis study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea-level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea-level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatio-temporal occurrence distribution. The result provides useful guidance for predicting the HREs by depicting important factors to be differently considered depending on their synoptic categorization.


2019 ◽  
Vol 54 (3-4) ◽  
pp. 1469-1489 ◽  
Author(s):  
Yuxing Yun ◽  
Changhai Liu ◽  
Yali Luo ◽  
Xudong Liang ◽  
Ling Huang ◽  
...  

AbstractConvection-permitting regional climate models have been shown to improve precipitation simulation in many aspects, such as the diurnal cycle, precipitation frequency, intensity and extremes in many studies over several geographical regions of the world, but their skill in reproducing the warm-season precipitation characteristics over the East Asia has not been robustly tested yet. Motivated by recent advances in computing power, model physics and high-resolution reanalysis, we use the convection-permitting weather research and forecasting (WRF) model configured with 3 km grid spacing to simulate the warm-season precipitation in eastern China for 10 seasons (2008–2017). The hourly 31-km-resolution ERA5 reanalysis data are used to provide initial and boundary conditions for the simulations. The objectives are (1) to evaluate the model skill in simulating warm-season precipitation climatology in the East Asian monsoon region, (2) to identify the promises and problems of the convection-permitting simulation, and (3) to investigate solutions for the model deficiencies. Results demonstrate that the 3-km-resolution WRF model reasonably reproduces the spatial characteristics of seasonal and sub-seasonal precipitation, the seasonal meridional migration associated with the summer monsoon activity, the diurnal variation phase and amplitude, and the propagating convection east of the Tibetan Plateau. The major deficiency is that the model overestimates precipitation amount, especially in the afternoon. Analysis and sensitivity experiments suggest that improved treatment of sub-grid cloud fraction and the aerosol effects may help to suppress the oft-reported high precipitation bias. These results provide useful guidance for improving the model skill at simulating warm-season precipitation in East Asia.


2020 ◽  
Vol 12 (14) ◽  
pp. 2307
Author(s):  
Dandan Chen ◽  
Jianping Guo ◽  
Dan Yao ◽  
Zhe Feng ◽  
Yanluan Lin

The life cycle of mesoscale convective systems (MCSs) in eastern China is yet to be fully understood, mainly due to the lack of observations of high spatio-temporal resolution and objective methods. Here, we quantitatively analyze the properties of warm-season (from April to September of 2016) MCSs during their lifetimes using the Himawari-8 geostationary satellite, combined with ground-based radars and gauge measurements. Generally, the occurrence of satellite derived MCSs has a noon peak over the land and an early morning peak over the ocean, which is several hours earlier than the precipitation peak. The developing and dissipative stages are significantly longer as total durations of MCSs increase. Aided by three-dimensional radar mosaics, we find the fraction of convective cores over northern China is much lower when compared with those in central United States, indicating that the precipitation produced by broad stratiform clouds may be more important for northern China. When there exists a large amount of stratiform precipitation, it releases a large amount of latent heat and promotes the large-scale circulations, which favors the maintenance of MCSs. These findings provide quantitative results about the life cycle of warm-season MCSs in eastern China based on multiple data sources and large numbers of samples.


2016 ◽  
Vol 73 (9) ◽  
pp. 3599-3616 ◽  
Author(s):  
Tianmeng Chen ◽  
Jianping Guo ◽  
Zhanqing Li ◽  
Chuanfeng Zhao ◽  
Huan Liu ◽  
...  

Abstract Many efforts have been taken to investigate aerosol–cloud interactions from space, but only a few studies have examined the response of vertical cloud structure to aerosol perturbations. Three-dimensional cloud climatologies of eight different cloud types identified from the CloudSat level-2 cloud product during the warm season (May–September) in 2008–10 over eastern China were first generated and analyzed. Using visibility as a proxy for cloud condensation nuclei, in combination with satellite-observed radar reflectivity, normalized contoured frequency by altitude diagrams of the differences in cloud radar reflectivity Z profiles under polluted and clean conditions were constructed. For shallow cumulus clouds (shallow Cu) Z tends to be inhibited, and it is enhanced in the upper layers for deep cumulus (deep Cu), nimbostratus (Ns), and deep convective clouds (DCC) under polluted conditions. Overall, analyses of the modified center of gravity (MCOG) and cloud-top height (CTH) also point to a similar aerosol effect, except for the nonsignificant changes in MCOGs and CTHs in deep Cu. The impacts of environmental factors such as lower-tropospheric stability and vertical velocity are also discussed for these types of clouds. Although consistent aerosol-induced elevations in MCOGs and CTHs for Ns and DCC clouds are observed, the effect of meteorology cannot be completely ruled out, which merits further analysis.


2017 ◽  
Vol 32 (4) ◽  
pp. 1289-1299 ◽  
Author(s):  
Xinlin Yang ◽  
Jianhua Sun ◽  
Yongguang Zheng

Abstract A method using cloud-to-ground lightning was developed to retrieve severe convective wind (SCW) events from significant weather report data over China during the period 2010–14. The results showed that SCW events were a feature of local weather activity, and their distribution showed clear seasonal and diurnal variations. The SCW events mainly occurred over eastern China during the midafternoon in the warm season and rarely occurred over western China. The highest frequency of SCW events was recorded in north China and Guangdong Province. There was also a high frequency of SCW events in the middle and lower reaches of the Yangtze River. The most frequent occurrence of SCW events was in Guangdong Province in spring, while a high frequency of SCW events was observed in both north China and Guangdong Province during the summer months. The peak month for SCW events was July over the whole of China and June in north China. The pattern in Guangdong Province had a bimodal distribution, with the peak months being May and August. The majority of SCW events occurred between 1200 and 2000 local time.


Sign in / Sign up

Export Citation Format

Share Document