A Rare Nitinol Double-Layer Micromesh Carotid Stent Complication: Late Thrombosis—First Case Reported in Literature

2019 ◽  
Vol 58 ◽  
pp. 380.e5-380.e8 ◽  
Author(s):  
Gianfranco Varetto ◽  
Edoardo Frola ◽  
Lorenzo Gibello ◽  
Flavia Spalla ◽  
Paolo Garneri ◽  
...  
1991 ◽  
Vol 226 ◽  
pp. 149-174 ◽  
Author(s):  
E. Georgiou ◽  
D. T. Papageorgiou ◽  
C. Maldarelli ◽  
D. S. Rumschitzki

In this paper we examine the linear stability of an annular film surrounding a dielectric-fluid core in a tube in the presence of double layers of charges at the film core and at the film–tube interfaces, when the fluid-fluid interface is of low tension. In the absence of electrostatic forces, the surface tension force arising from the circumferential curvature destabilizes, and that from the axial curvature stabilizes the system. The competition is such that waves larger than the unperturbed interface circumference are unstable and those shorter are stable. For charged layers in the film, two cases are examined: (i) double-layer repulsion where the volume charge density is everywhere of the same sign and (ii) double-layer attraction where the diffusive layers next to the film interfaces are of opposite signs. In the first case, double-layer repulsion and surface tension lowering stabilize the destabilizing action of the circumferential component of the surface tension force, and a window of stability can exist. In the case of double layers of opposite signs, double-layer attraction destabilizes the system, and growth rates larger than those caused by pure capillarity can arise. Finally, for the case of a core bounded by an infinite electrolyte, surface tension lowering stabilizes the destabilizing action of the circumferential component of the surface tension force and destabilizes the longitudinal one, although the magnitudes of these effects may differ. As a result the thread can become unstable to waves shorter than the interface circumference.


2015 ◽  
Vol 22 (4) ◽  
pp. 634-639 ◽  
Author(s):  
Christian Wissgott ◽  
Wolfram Schmidt ◽  
Christoph Brandt ◽  
Peter Behrens ◽  
Reimer Andresen

Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


2003 ◽  
Vol 8 (5) ◽  
pp. 4-12
Author(s):  
Lorne Direnfeld ◽  
James Talmage ◽  
Christopher Brigham

Abstract This article was prompted by the submission of two challenging cases that exemplify the decision processes involved in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides). In both cases, the physical examinations were normal with no evidence of illness behavior, but, based on their histories and clinical presentations, the patients reported credible symptoms attributable to specific significant injuries. The dilemma for evaluators was whether to adhere to the AMA Guides, as written, or to attempt to rate impairment in these rare cases. In the first case, the evaluating neurologist used alternative approaches to define impairment based on the presence of thoracic outlet syndrome and upper extremity pain, as if there were a nerve injury. An orthopedic surgeon who evaluated the case did not base impairment on pain and used the upper extremity chapters in the AMA Guides. The impairment ratings determined using either the nervous system or upper extremity chapters of the AMA Guides resulted in almost the same rating (9% vs 8% upper extremity impairment), and either value converted to 5% whole person permanent impairment. In the second case, the neurologist evaluated the individual for neuropathic pain (9% WPI), and the orthopedic surgeon rated the patient as Diagnosis-related estimates Cervical Category II for nonverifiable radicular pain (5% to 8% WPI).


2007 ◽  
Vol 38 (4) ◽  
pp. 42
Author(s):  
ELIZABETH MECHCATIE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document