Non-invasive analysis of gallbladder bile composition in cynomolgus monkeys using in vivo 1H magnetic resonance spectroscopy

Author(s):  
B KUNNECKE ◽  
A BRUNS ◽  
M VONKIENLIN
Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3406
Author(s):  
Elisabeth Bumes ◽  
Fro-Philip Wirtz ◽  
Claudia Fellner ◽  
Jirka Grosse ◽  
Dirk Hellwig ◽  
...  

Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2–99.9%) and a specificity of 75.0% (95% CI, 42.9–94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Joseph Costello ◽  
...  

Abstract Telomere shortening constitutes a natural barrier to uncontrolled proliferation and all tumors must find a mechanism of maintaining telomere length. Most human tumors, including high-grade primary glioblastomas (GBMs) and low-grade oligodendrogliomas (LGOGs) achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. TERT expression is, therefore, a driver of tumor proliferation and, due to this essential role, TERT is also a therapeutic target. However, non-invasive methods of imaging TERT are lacking. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers of TERT expression that will enable non-invasive visualization of tumor burden in LGOGs and GBMs. First, we silenced TERT expression by RNA interference in patient-derived LGOG (SF10417, BT88) and GBM (GS2) models. Our results linked TERT silencing to significant reductions in steady-state levels of NADH in all models. NADH is essential for the conversion of pyruvate to lactate, suggesting that measuring pyruvate flux to lactate could be useful for imaging TERT status. Recently, deuterium (2H)-MRS has emerged as a novel, clinically translatable method of monitoring metabolic fluxes in vivo. However, to date, studies have solely examined 2H-glucose and the use of [U-2H]pyruvate for non-invasive 2H-MRS has not been tested. Following intravenous injection of a bolus of [U-2H]pyruvate, lactate production was higher in mice bearing orthotopic LGOG (BT88 and SF10417) and GBM (GS2) tumor xenografts relative to tumor-free mice, suggesting that [U-2H]pyruvate has the potential to monitor TERT expression in vivo. In summary, our study, for the first time, shows the feasibility and utility of [U-2H]pyruvate for in vivo imaging. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental cancer hallmark, i.e. TERT, into glioma patient management.


2020 ◽  
Vol 4 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Laurie J. Rich ◽  
Puneet Bagga ◽  
Neil E. Wilson ◽  
Mitchell D. Schnall ◽  
John A. Detre ◽  
...  

1999 ◽  
Vol 58 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Heerschap ◽  
C. Houtman ◽  
H. J. A. in 't Zandt ◽  
A. J. van den Bergh ◽  
B. Wieringa

31P magnetic resonance spectroscopy (MRS) offers a unique non-invasive window on energy metabolism in skeletal muscle, with possibilities for longitudinal studies and of obtaining important bioenergetic data continuously and with sufficient time resolution during muscle exercise. The present paper provides an introductory overview of the current status of in vivo31P MRS of skeletal muscle, focusing on human applications, but with some illustrative examples from studies on transgenic mice. Topics which are described in the present paper are the information content of the 31P magnetic resonance spectrum of skeletal muscle, some practical issues in the performance of this MRS methodology, related muscle biochemistry and the validity of interpreting results in terms of biochemical processes, the possibility of investigating reaction kinetics in vivo and some indications for fibre-type heterogeneity as seen in spectra obtained during exercise.


Sign in / Sign up

Export Citation Format

Share Document