Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins

2009 ◽  
Vol 1794 (9) ◽  
pp. 1344-1354 ◽  
Author(s):  
Kodai Machida ◽  
Ryoko Fujiwara ◽  
Tatsuhide Tanaka ◽  
Isao Sakane ◽  
Kunihiro Hongo ◽  
...  
2012 ◽  
Vol 32 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Girish C. Melkani ◽  
Robin Sielaff ◽  
Gustavo Zardeneta ◽  
Jose A. Mendoza

The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL–rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.


Cell ◽  
2000 ◽  
Vol 100 (5) ◽  
pp. 561-573 ◽  
Author(s):  
George W Farr ◽  
Krystyna Furtak ◽  
Matthew B Rowland ◽  
Neil A Ranson ◽  
Helen R Saibil ◽  
...  

2001 ◽  
Vol 79 (5) ◽  
pp. 569-577 ◽  
Author(s):  
Walid A Houry

The bacterial chaperonin GroEL functions with its cofactor GroES in assisting the folding of a wide range of proteins in an ATP-dependent manner. GroEL–GroES constitute one of the main chaperone systems in the Escherichia coli cytoplasm. The chaperonin facilitates protein folding by enclosing substrate proteins in a cage defined by the GroEL cylinder and the GroES cap where folding can take place in a protected environment. The in vivo role of GroEL has recently been elucidated. GroEL is found to interact with 10–15% of newly synthesized proteins, with a strong preference for proteins in the molecular weight range of 20–60 kDa. A large number of GroEL substrates have been identified and were found to preferentially contain proteins with multiple αβ domains that have α-helices and β-sheets with extensive hydrophobic surfaces. Based on the preferential binding of GroEL to these proteins and structural and biochemical data, a model of substrate recognition by GroEL is proposed. According to this model, binding takes place preferentially between the hydrophobic residues in the apical domains of GroEL and the hydrophobic faces exposed by the β-sheets or α-helices in the αβ domains of protein substrates.Key words: chaperone, folding, binding, hydrophobic interaction, structure.


2017 ◽  
Vol 114 (34) ◽  
pp. 9104-9109 ◽  
Author(s):  
Marielle A. Wälti ◽  
Thomas Schmidt ◽  
Dylan T. Murray ◽  
Huaibin Wang ◽  
Jenny E. Hinshaw ◽  
...  

We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and densely decorates the fibrils at a regular spacing of ∼200 Å. GroEL binds to the Het-s fibrils via its apical domain located at the top of the large open ring. Thus, apo GroEL and bullet-shaped GroEL/GroES complexes in which only a single ring is capped by GroES interact with the Het-s fibrils; no evidence is seen for any interaction with football-shaped GroEL/GroES complexes in which both rings are capped by GroES. EPR spectroscopy shows that rotational motion of a nitroxide spin label, placed at the N-terminal end of the first β-strand of Het-s fibrils, is significantly reduced in both Het-s/GroEL aggregates and Het-s fibrils, but virtually completely eliminated in Het-s/GroEL fibrils, suggesting that in the latter, GroEL may come into close proximity to the nitroxide label. Solid-state NMR measurements indicate that GroEL binds to the mobile regions of the Het-s fibril comprising the N-terminal tail and a loop connecting β-strands 4 and 5, consistent with interactions involving GroEL binding consensus sequences located therein.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 399 ◽  
Author(s):  
Huyen-Thi Tran ◽  
Jongha Lee ◽  
Hyunjae Park ◽  
Jeong-Gu Kim ◽  
Seunghwan Kim ◽  
...  

Xanthomonas oryzae pv. oryzae (Xoo) is a plant pathogen that causes bacterial blight of rice, with outbreaks occurring in most rice-growing countries. Thus far, there is no effective pesticide against bacterial blight. Chaperones in bacterial pathogens are important for the stabilization and delivery of effectors into host cells to cause disease. In bacteria, GroEL/GroES complex mediates protein folding and protects proteins against misfolding and aggregation caused by environmental stress. We determined the crystal structure of GroEL from Xanthomonas oryzae pv. oryzae (XoGroEL) at 3.2 Å resolution, which showed the open form of two conserved homoheptameric rings stacked back-to-back. In the open form structure, the apical domain of XoGroEL had a higher B factor than the intermediate and equatorial domains, indicating that the apical domain had a flexible conformation before the binding of substrate unfolded protein and ATP. The XoGroEL structure will be helpful in understanding the function and catalytic mechanism of bacterial chaperonin GroELs.


2017 ◽  
Author(s):  
Fumihiro Motojima ◽  
Katsuya Fujii ◽  
Masasuke Yoshida

AbstractChaperonins assist folding of many cellular proteins, including essential proteins for cell viability. However, it remains unclear how chaperonin-assisted folding is different from spontaneous folding. Chaperonin GroEL/GroES facilitates folding of denatured protein encapsulated in its central cage but the denatured protein often escapes from the cage to the outside during reaction. Here, we show evidence that the in-cage-folding and the escape occur diverging from the same intermediate complex in which polypeptide is tethered loosely to the cage and partly protrudes out of the cage. Furthermore, denatured proteins in the chaperonin cage start their folding from extended conformations but not from compact conformations as usually observed in spontaneous folding. We propose that the formation of tethered intermediate of polypeptide is necessary to prevent polypeptide collapse at the expense of polypeptide escape. The tethering of polypeptide would allow freely mobile portions of tethered polypeptide to fold segmentally. The folding acceleration and deceleration by chaperonin for various substrate proteins can be explained by considering the tethering.


Author(s):  
James F. Hainfeld ◽  
Frederic R. Furuya ◽  
Kyra Carbone ◽  
Martha Simon ◽  
Beth Lin ◽  
...  

A recently developed 1.4 nm gold cluster has been found to be useful in labeling macromolecular sites to 1-3 nm resolution. The gold compound is organically derivatized to contain a monofunctional arm for covalent linking to biomolecules. This may be used to mark a specific site on a structure, or to first label a component and then reassemble a multicomponent macromolecular complex. Two examples are given here: the chaperonin groEL and ribosomes.Chaperonins are essential oligomeric complexes that mediate nascent polypeptide chain folding to produce active proteins. The E. coli chaperonin, groEL, has two stacked rings with a central hole ∽6 nm in diameter. The protein dihydrofolate reductase (DHFR) is a small protein that has been used in chain folding experiments, and serves as a model substrate for groEL. By labeling the DHFR with gold, its position with respect to the groEL complex can be followed. In particular, it was sought to determine if DHFR refolds on the external surface of the groEL complex, or whether it interacts in the central cavity.


Sign in / Sign up

Export Citation Format

Share Document