scholarly journals Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma

2013 ◽  
Vol 1835 (1) ◽  
pp. 46-60 ◽  
Author(s):  
Aruljothi Subramaniam ◽  
Muthu K. Shanmugam ◽  
Ekambaram Perumal ◽  
Feng Li ◽  
Alamelu Nachiyappan ◽  
...  
2020 ◽  
Vol 19 ◽  
pp. 153303382097753
Author(s):  
Jingtao Wang ◽  
Jimin Zhang ◽  
Dongzhou Ma ◽  
Xiushan Li

To explore the role and mechanism of CERS1 in hypophysoma and investigate whether CERS1 overexpression can change the autophagy process of hypophysoma, and then to explore whether CERS1’s effect was regulated by the PI3K/AKT signaling pathway. Western blot and RT-PCR were used to analyze the expression or mRNA level of CERS1 at different tissues or cell lines. Afterwards, the occurrence and development of hypophysoma in vivo and in vitro, respectively, was observed by using CERS1 overexpression by lentivirus. Finally, MK-2206 and LY294002 were applied to discuss whether the role of CERS1 was regulated by the PI3K/AKT signaling pathway. Results show that the CERS1 expression and mRNA level in tumor or AtT-20 cells were decreased. CERS1 over-expressed by lentivirus could inhibit hypophysoma development in vivo and in vitro by reducing tumor volume and weight, weakening tumor proliferation and invasion, and enhancing apoptosis. In addition, shCERS1 could reverse the process. The above results indicate that CERS1 is possibly able to enhance autophagy in hypophysoma through the PI3K/AKT signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xingqing Jia ◽  
Shuangqin Wei ◽  
Wujun Xiong

Background. Hepatocellular carcinoma (HCC) is a common malignant cancer worldwide. CXCL5 has a role in inhibiting cell viability and metastasis in many tumors. In the present study, we investigated the role of CXCL5 in HCC and explored the underlying mechanism. Material and Methods. RT-qPCR and western blot were performed to evaluate the mRNA and protein levels of CXCL5. CCK-8 and transwell assay were applied to measure the proliferative and invasive abilities. Meanwhile, the Kaplan–Meier method was used to assess the survival of HCC patients. Results. CXCL5 was upregulated in HCC tissues, which predicted a shorter overall survival in HCC. CXCL5 was a target gene of miR-577, and its expression was mediated by miR-577 in HCC. Knockdown of CXCL5 suppressed HuH-7 cell proliferation, invasion, and EMT and inhibited the NF-κB signaling pathway in cells. Moreover, knockdown of CXCL5 inhibited the xenograft growth of HuH-7 cells. Conclusion. Overexpression of CXCL5 predicts poor prognosis in HCC patients. Knockdown of CXCL5 inhibits cell proliferation and invasion through the NF-κB signaling pathway in HCC. The newly identified role of the CXCL5/miR-577/NF-κB axis provides novel insights into the targeted therapy of HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


Hepatology ◽  
2014 ◽  
Vol 60 (3) ◽  
pp. 1110-1111 ◽  
Author(s):  
Emeric Limagne ◽  
Vanessa Cottet ◽  
Alexia Karen Cotte ◽  
Samia Hamza ◽  
Patrick Hillon ◽  
...  

Tumor Biology ◽  
2016 ◽  
Vol 37 (11) ◽  
pp. 15107-15114 ◽  
Author(s):  
M. H. Shahi ◽  
S. Farheen ◽  
M. P. M. Mariyath ◽  
J. S. Castresana

2019 ◽  
Vol 46 (4) ◽  
pp. 4581-4590 ◽  
Author(s):  
Alaa Habieb ◽  
Marwa Matboli ◽  
Hanaa El-Tayeb ◽  
Farid El-Asmar

2019 ◽  
Vol 10 (6) ◽  
pp. 1570-1579 ◽  
Author(s):  
Qinfeng Huang ◽  
Junhong Li ◽  
Jinghui Zheng ◽  
Ailing Wei

Sign in / Sign up

Export Citation Format

Share Document