Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription

2005 ◽  
Vol 330 (1) ◽  
pp. 271-278 ◽  
Author(s):  
Cristina A. Viegas ◽  
M. Guadalupe Cabral ◽  
Miguel C. Teixeira ◽  
Grit Neumann ◽  
Hermann J. Heipieper ◽  
...  
HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 486D-486
Author(s):  
Philip G. Gibson ◽  
Gregory L. Reighard ◽  
Gary L. Powell ◽  
Thomas C. Jenkins

Graft-transmissible agents found in `Ta Tao 5' peach have been associated with phenological changes, including delay in bloom, reduced shoot vigor, and early autumn defoliation. Peach Latent Mosaic Viroid (PLMVd) is present as a graft-transmissible agent in `Ta Tao 5'. In order to further characterize the changes occurring in trees exposed to PLMVd from `Ta Tao 5' grafts, total fatty acid content was measured for peach buds during chilling accumulation and release from dormancy in `Coronet' peach trees and `Coronet' trees treated with `Ta Tao 5' bud grafts. Palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids were the major fatty acids in dormant and releasing peach buds of both the controls and treated trees. The degree of unsaturation increased immediately following completion of chilling requirement in both the untreated controls and in the treated trees. However, the desaturation of linoleic acid to linolenic acid was significantly inhibited in the trees treated with `Ta Tao 5' bud grafts, which was accompanied by a concomitant delay in the resumption of growth. The disparity between the control and treated trees in the trend toward increased fatty acid unsaturation continued through the resumption of growth. The changes in degree of fatty acid saturation correlated with a response to forcing conditions and the release from dormancy. The presence of PLMVd in `Coronet' peach trees affects membrane fatty acid saturation during chilling accumulation and dormancy release. These findings suggest that metabolic pathways involving fatty acid desaturation are linked to the phenotypic variation in trees exposed to PLMVd.


2004 ◽  
Vol 129 (5) ◽  
pp. 649-652
Author(s):  
Philip G. Gibson ◽  
Gregory L. Reighard ◽  
Gary L. Powell ◽  
Thomas C. Jenkins

Peach [Prunus persica (L.) Batsch (Peach Group)] trees infected with peach latent mosaic viroid (PLMVd) have been associated with phenological changes including delay in bloom, reduced shoot vigor, and early autumn defoliation. In order to further characterize the changes occurring in trees inoculated with PLMVd, total fatty acid content was measured for floral buds during release from dormancy in `Coronet' peach trees. Palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids were the major fatty acids in dormant and releasing peach buds of both control and PLMVd-inoculated (VI) trees. The degree of unsaturation increased immediately following release from dormancy in both the control and VI trees. However, desaturation of linoleic acid to linolenic acid was significantly inhibited in VI trees, which was accompanied by a concomitant delay in the resumption of growth. The disparity between the control and VI trees in the progression of increased fatty acid unsaturation continued through petal fall. The presence of PLMVd in `Coronet' peach trees slowed membrane fatty acid desaturation during release from dormancy and suggested that metabolic pathways involving fatty acid desaturation were linked to the delayed phenology of the VI trees.


2011 ◽  
Vol 77 (20) ◽  
pp. 7296-7306 ◽  
Author(s):  
Thomas Z. Lerch ◽  
Marie-France Dignac ◽  
Enrique Barriuso ◽  
André Mariotti

ABSTRACTCombining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis,Cupriavidus necatorJMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with13C.C. necatorJMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


1997 ◽  
Vol 36 (10) ◽  
pp. 27-36 ◽  
Author(s):  
P. Mungkarndee ◽  
S. M. Rao Bhamidimarri ◽  
A. J. Mawson ◽  
R. Chong

Biodegradation of the mixed inhibitory substrates, 2,4-dichlorophenoxyacetic acid (2,4-D) and para-chloro-ortho-cresol (PCOC) was studied in aerobic batch cultures. Each substrate added beyond certain concentrations inhibited the degradation of the other. This mutual inhibition was found to be enhanced by 2,4-dichlorophenol (2,4-DCP) which is an intermediate metabolic product of 2,4-D. When 2,4-DCP accumulated to approximatelY 40 mg/l degradation of all compounds in the mixed 2,4-D and PCOC substrate system was completely inhibited. The degradation of 2,4-D and PCOC individually was also found to be inhibited by elevated concentrations of 2,4-DCP added externally, while PCOC inhibited the utilization of the intermediate.


Sign in / Sign up

Export Citation Format

Share Document