Characterization of the Reproductive Mode in Guayule In Vitro

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


1984 ◽  
Vol 62 (7) ◽  
pp. 1393-1397 ◽  
Author(s):  
M. D. Zhou ◽  
T. T. Lee

The callus-promoting activity of most commonly known as well as some rarely tested auxins was compared with that of 2,4-dichlorophenoxyacetic acid (2,4-D) for in vitro culture of the excised embryo of spring and winter wheat (Triticum aestivum L.), cv. Chinese Spring and cv. Fredrick. Different auxins in a concentration range from 1 to 50 μM showed widely different activities. Also the two wheat cultivars responded differently to the auxins. When rapid callus formation with limited root growth was used as the basis for comparison, 2-(2-methyl-4-chlorophenoxy)propionic acid (2-MCPP), α-naphthaleneacetic acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6,trichloropicolinic acid (picloram), γ-(2,4-dichlorophenoxy)butyric acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid, in the order of effectiveness, were superior to 2,4,-D for callus induction from the embryo of 'Chinese Spring,' although the concentration required was higher than that of 2,4-D. For the winter wheat 'Fredrick,' however, only picloram, dicamba, and 2-MCPP performed as well as 2,4-D. All auxins tested promoted shoot growth; 2-methyl-4-chlorophenoxypropionic acid was most effective for 'Chinese Spring,' whereas picloram was most effective for 'Fredrick.'


2009 ◽  
Vol 92 (6) ◽  
pp. 1773-1779 ◽  
Author(s):  
Robin C Boro ◽  
K Vikas Singh ◽  
C Raman Suri

Abstract The generation of specific and sensitive antibodies against small molecules is greatly dependent upon the characteristics of the hapten-protein conjugates. In this study, we report a new fluorescence-based method for the characterization of hapten-protein conjugates. The method is based on an effect promoted by hapten-protein conjugation density upon the fluorescence intensity of the intrinsic tryptophan chromophore molecules of the protein. The proposed methodology is applied to quantify the hapten-protein conjugation density for two different chlorophenoxyacetic acid pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenoxybutyric acid (2,4-DB), coupled to carrier protein. Highly sensitive anti-2,4-D and anti-2,4-DB antibodies were obtained using these well-characterized hapten-protein conjugates. The generated antibodies were used in an immunoassay format demonstrating inhibitory concentration (IC50) values equal to 30 and 7 ng/mL for 2,4-D and 2,4-DB, respectively. Linearity was observed in the concentration range between 0.1500 ng/mL with LODs around 4 and 3 ng/mL for 2,4-D and 2,4-DB, respectively, in standard water samples. The proposed method was successfully applied for the determination of the extent of hapten-protein conjugation to produce specific antibodies for immunoassay development against pesticides.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Dorota Weigt ◽  
Idzi Siatkowski ◽  
Magdalena Magaj ◽  
Agnieszka Tomkowiak ◽  
Jerzy Nawracała

Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures.


2010 ◽  
Vol 70 (2) ◽  
pp. 361-366 ◽  
Author(s):  
MBB Cassanego ◽  
A Droste ◽  
PG Windisch

Regnellidium diphyllum is considered as endangered, occurring in the State of Rio Grande do Sul, Brazil, and a few adjoining localities in Uruguay, Argentina and the State of Santa Catarina. It grows in wetlands frequently altered for agricultural activities. Herbicides based on 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in these fields. The effects of 2,4-D on the germination of megaspores and initial sporophytic development of R. diphyllum were investigated. Six concentrations of 2,4-D (0.32; 0.64; 1.92; 4.80; 9.60 and 19.20 mg.L-1), and the control (0.00 mg.L-1), were tested in vitro, using Meyer's medium. Cultures were maintained in a growth chamber at 24 ± 1 °C, under artificial light with nominal irradiance of 110 µmol.m-2/s and 16 hours photoperiod. Megaspore germination was lower at 9.60 and 19.20 mg.L-1 of 2,4-D (56 and 48%, respectively), compared with the control (68%). Herbicide concentrations of up to 1.92 mg.L-1 did not significantly decrease the number of sporophytes formed. At 19.20 mg.L-1, no sporophytes were formed. The lengths of the primary root, primary and secondary leaves were greater at concentrations of 0.32 and 0.64 mg.L-1 of 2,4-D. Low concentrations of 2,4-D do not affect germination rates and initial development of R. diphyllum in a significant way. However, higher concentrations (9.60 and 19.20 mg.L-1) affect substantially the germination of the megaspores and interfere with the establishment of the species.


1999 ◽  
Vol 77 (9) ◽  
pp. 1391-1397
Author(s):  
Genevieve Louise Mark ◽  
John E Hooker ◽  
Alexander Hahn ◽  
Chris T Wheeler

Micropropagated, rooted, and calli explants of Casuarina equisetifolia L. were inoculated with Frankia UGL 020605S and the arbuscular mycorrhizal fungus (AMF) Glomus mosseae, in single and dual co-culture, in vitro. Different micropropagation media formulations were evaluated for their capacity to stimulate germination of G. mosseae spores and growth of Frankia. Murashige and Skoog basal nutrient (half strength) medium, supplemented with 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic acid (2,4-D), and pyruvate was selected for the in vitro co-culture of C. equisetifolia callus explants, G. mosseae, and Frankia. This medium (M4) supported 70% AMF spore germination with 44 and 34% of the germinating spores producing single and branched hyphal strands, respectively. Hoaglands (quarter strength, modified by Hoaglands and Arnon (1950)) nutrient medium (M5) with no supplements was selected for the in vitro co-culture of rooted C. equisetifolia explants, G. mosseae, and Frankia and supported 57% AMF spore germination with 29 and 40% of the germinating spores producing single and branched hyphal strands, respectively. Both media supported significant growth of Frankia. In both cases agar was substituted with Terragreen(r). AMF appressoria and intercellular hyphae were observed in rooted C. equisetifolia at 28 days; arbuscule formation occurred at 56 days postinoculation. Frankia infection was evident after 28 days. This was observed in both dual and single in vitro co-cultures. No specific immunofluorescent or immunogold reactions to monoclonal antibodies (mABs) anti-Frankia < 8C5 > and anti-G. mosseae < F5G5 > were evident in C. equisetifolia callus explants.Key words: arbuscular mycorrhizal fungi (AMF), Frankia, Casuarina, micropropagation, immunofluorescent labelling.


Sign in / Sign up

Export Citation Format

Share Document