Association of Polycomb group SUZ12 with WD-repeat protein MEP50 that binds to histone H2A selectively in vitro

2006 ◽  
Vol 345 (3) ◽  
pp. 1051-1058 ◽  
Author(s):  
Kenji Furuno ◽  
Toshihiro Masatsugu ◽  
Miki Sonoda ◽  
Takehiko Sasazuki ◽  
Ken Yamamoto
2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Elias Seif ◽  
Jin Joo Kang ◽  
Charles Sasseville ◽  
Olga Senkovich ◽  
Alexander Kaltashov ◽  
...  

Abstract Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.


2008 ◽  
Vol 414 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Asuka Kato ◽  
Souichi Kurita ◽  
Aya Hayashi ◽  
Noriko Kaji ◽  
Kazumasa Ohashi ◽  
...  

Cofilin regulates actin filament dynamics by stimulating actin filament disassembly and plays a critical role in cytokinesis and chemotactic migration. Aip1 (actin-interacting protein 1), also called WDR1 (WD-repeat protein 1), is a highly conserved WD-repeat protein in eukaryotes and promotes cofilin-mediated actin filament disassembly in vitro; however, little is known about the mechanisms by which Aip1 functions in cytokinesis and cell migration in mammalian cells. In the present study, we investigated the roles of Aip1 in cytokinesis and chemotactic migration of human cells by silencing the expression of Aip1 using siRNA (small interfering RNA). Knockdown of Aip1 in HeLa cells increased the percentage of multinucleate cells; this effect was reversed by expression of an active form of cofilin. In Aip1-knockdown cells, the cleavage furrow ingressed normally from anaphase to early telophase; however, an excessive accumulation of actin filaments was observed on the contractile ring in late telophase. These results suggest that Aip1 plays a crucial role in the completion of cytokinesis by promoting cofilin-mediated actin filament disassembly in telophase. We have also shown that Aip1 knockdown significantly suppressed chemokine-induced chemotactic migration of Jurkat T-lymphoma cells, and this was blocked by expression of an active form of cofilin. Whereas control cells mostly formed a single lamellipodium in response to chemokine stimulation, Aip1 knockdown cells abnormally exhibited multiple protrusions around the cells before and after cell stimulation. This indicates that Aip1 plays an important role in directional cell migration by restricting the stimulus-induced membrane protrusion to one direction via promoting cofilin activity.


2020 ◽  
Author(s):  
Elias Seif ◽  
Jin Joo Kang ◽  
Charles Sasseville ◽  
Olga Senkovitch ◽  
Alexander Kaltashov ◽  
...  

AbstractPolycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) is important for chromatin compaction and large-scale chromatin organization. Like many SAMs, Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand mechanistically how this occurs, we analyzed the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Condensate formation depends on Ph SAM, and is enhanced by but not strictly dependent on, its polymerization activity. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. Overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, phase separation is an activity of the SAM, which, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.


2015 ◽  
Vol 290 (15) ◽  
pp. 9674-9689 ◽  
Author(s):  
Emmanuel S. Burgos ◽  
Carola Wilczek ◽  
Takashi Onikubo ◽  
Jeffrey B. Bonanno ◽  
Janina Jansong ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 183-194
Author(s):  
Douglas B Rusch ◽  
Thomas C Kaufman

Abstract The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.


2009 ◽  
Vol 13 (10) ◽  
pp. 2673-2684 ◽  
Author(s):  
Zhihong Cheng ◽  
Yuying Liu ◽  
Chernhoe Wang ◽  
Roy Parker ◽  
Haiwei Song

2009 ◽  
Vol 284 (24) ◽  
pp. 16066-16070 ◽  
Author(s):  
Navasona Krishnan ◽  
Dae Gwin Jeong ◽  
Suk-Kyeong Jung ◽  
Seong Eon Ryu ◽  
Andrew Xiao ◽  
...  

In mammalian cells, the DNA damage-related histone H2A variant H2A.X is characterized by a C-terminal tyrosyl residue, Tyr-142, which is phosphorylated by an atypical kinase, WSTF. The phosphorylation status of Tyr-142 in H2A.X has been shown to be an important regulator of the DNA damage response by controlling the formation of γH2A.X foci, which are platforms for recruiting molecules involved in DNA damage repair and signaling. In this work, we present evidence to support the identification of the Eyes Absent (EYA) phosphatases, protein-tyrosine phosphatases of the haloacid dehalogenase superfamily, as being responsible for dephosphorylating the C-terminal tyrosyl residue of histone H2A.X. We demonstrate that EYA2 and EYA3 displayed specificity for Tyr-142 of H2A.X in assays in vitro. Suppression of eya3 by RNA interference resulted in elevated basal phosphorylation and inhibited DNA damage-induced dephosphorylation of Tyr-142 of H2A.X in vivo. This study provides the first indication of a physiological substrate for the EYA phosphatases and suggests a novel role for these enzymes in regulation of the DNA damage response.


2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Beáta Strejčková ◽  
Radim Čegan ◽  
Ales Pecinka ◽  
Zbyněk Milec ◽  
Jan Šafář

Abstract Background Polycomb repressive complexes 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3; Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Both complexes have been thoroughly studied in Arabidopsis, but the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown. Results Here, we present the in silico identification of the Polycomb repressive complex 1 and 2 (PRC2, PRC1) subunits in allohexaploid bread wheat, the reconstruction of their evolutionary history and a transcriptional analysis over a series of 33 developmental stages. We identified four main subunits of PRC2 [E(z), Su(z), FIE and MSI] and three main subunits of PRC1 (Pc, Psc and Sce) and determined their chromosomal locations. We found that most of the genes coding for subunit proteins are present as paralogs in bread wheat. Using bread wheat RNA-seq data from different tissues and developmental stages throughout plant ontogenesis revealed variable transcriptional activity for individual paralogs. Phylogenetic analysis showed a high level of protein conservation among temperate cereals. Conclusions The identification and chromosomal location of the Polycomb repressive complex 1 and 2 core components in bread wheat may enable a deeper understanding of developmental processes, including vernalization, in commonly grown winter wheat.


Sign in / Sign up

Export Citation Format

Share Document