Activation of PPARδ up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic β-cells

2010 ◽  
Vol 391 (3) ◽  
pp. 1567-1572 ◽  
Author(s):  
Jun Wan ◽  
Li Jiang ◽  
Qingguo Lü ◽  
Linqiu Ke ◽  
Xiaoyu Li ◽  
...  
2006 ◽  
Vol 36 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Kim Ravnskjaer ◽  
Michael Boergesen ◽  
Louise T Dalgaard ◽  
Susanne Mandrup

Tight regulation of fatty acid metabolism in pancreatic β-cells is important for β-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with β-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxicity of fatty acids. The peroxisome proliferator activated receptor α (PPARα) is a key activator of genes involved in β-cell fatty acid oxidation, and transcription of the PPARα gene has been shown to be repressed by increasing concentrations of glucose in β-cells. However, the mechanism underlying this transcriptional repression by glucose remains unclear. Here we report that glucose-induced repression of PPARα gene expression in INS-1E cells is independent of β-cell excitation and insulin secretion but requires activation of protein phosphatase 2A in a process involving inactivation of the AMP-activated protein kinase (AMPK). Pharmacological activation of AMPK at high glucose concentrations interferes with glucose repression of PPARα and PPARα target genes in INS-1E cells as well as in rat islets. Specific knock-down of the catalytic AMPK-subunit AMPKα2 but not AMPKα1 using RNAi suppressed PPARα expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARα expression in pancreatic β-cells.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mingming Cao ◽  
Yuzhen Tong ◽  
Qingguo Lv ◽  
Xiang Chen ◽  
Yang Long ◽  
...  

One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of functional pancreatic β cells. PPARδ is an orphan nuclear receptor. It plays a pivotal role in regulating the metabolism of dietary lipids and fats. However, the correlation between PPARδ of fatty acids and ER stress of pancreatic β cells is not quite clear till date. Here, we show that PPARδ attenuates palmitate-induced ER stress of pancreatic β cells. On the other hand, PPARδ agonist inhibits both abnormal changes in ER structure and activation of signaling cascade, which is downstream ER stress. Further, we illustrate that PPARδ attenuates palmitate-induced ER stress by promoting fatty acid oxidation through treatment with etomoxir, an inhibitor of fatty acid oxidation. It dramatically abolishes PPARδ-mediated inhibition of ER stress. Finally, we show that PPARδ could protect pancreatic β cells from palmitate-induced cell death and dysfunction of insulin secretion. Our work elucidates the protective effect of PPARδ on the fatty-acid-induced toxicity of pancreatic β cells.


2012 ◽  
Vol 38 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Liang Liu ◽  
Yanping Wang ◽  
Linxi Wang ◽  
Yichuan Lin ◽  
Xiaohong Liu ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 268-268 ◽  
Author(s):  
Eric A Lee ◽  
Leonard Angka ◽  
Sarah-Grace Rota ◽  
Thomas Hanlon ◽  
Rose Hurren ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive malignant disease characterized by poor patient outcome and suboptimal front-line chemotherapy. To identify novel anti-AML compounds, we performed a high-throughput screen of a natural products library (n=800). This screen was performed against the AML cell line (TEX), which has several properties of leukemia stem cells, the cells responsible for disease pathophysiology and patient relapse. Here, avocatin B was identified as a potent and novel anti-leukemia agent. Avocatin B, at concentrations as high as 20µM, had no effect on normal peripheral blood stem cell viability. In contrast, it induced death of primary AML cells with an EC50 of 1.5-5.0 µM. Selective toxicity towards a functionally defined subset of primitive leukemia cells was also demonstrated. Avocatin B (3µM) reduced clonogenic growth of AML progenitor cells with no effect on clonogenic growth of normal hematopoietic stem cells. Further, treatment of primary AML cells with avocatin B (3µM) diminished their ability to engraft into the bone marrow of pre-conditioned, NOD/SCID mice (t18=6.5; p<0.001). Together, these results confirm that avocatin B is a novel anti-AML agent with selective toxicity toward leukemia and leukemia stem cells. Mechanistically, avocatin B-induced reactive oxygen species (ROS)-dependent leukemia cell apoptosis that was characterized by the release of mitochondrial proteins, cytochrome c and apoptosis inducing factor (AIF). Cytochrome c and AIF were detected in the cytosol of avocatin B treated TEX cells by flow cytometry. Avocatin B-induced apoptosis, as measured by the Annexin V/Propidium iodide assay, DNA fragmentation and PARP cleavage, was abolished in the presence of anti-oxidants confirming the functional importance of ROS. Next, we further evaluated the role of mitochondria in avocatin B-induced apoptosis. First, we generated leukemia cells lacking mitochondria by successive culturing in media containing ethidium bromide. The drastic (>80%) reduction in mitochondria were confirmed by nonyl acridine orange staining and flow cytometry and a near absence of the mitochondria specific proteins ANT and ND1, as measured by Western blotting. Avocatin B’s activity was abolished in leukemia cells lacking mitochondria. Next, using lentiviral knockdown, we generated leukemia cells lacking CPT1, the enzyme that facilitates transport of 16-20 carbon lipids into mitochondria. Avocatin B’s activity was abolished in cells with reduced CPT1 expression (>70% as measured by qPCR analysis). To further confirm the importance of CPT1 in avocatin B-induced death, we chemically inhibited CPT1 with etomoxir. Avocatin B’s activity was blocked in the presence of etomoxir, further demonstrating that avocatin B accumulates in mitochondria. Since avocatin B is a lipid that targets mitochondria and that mitochondria can oxidize fatty acids for energy, we next assessed the impact of avocatin B on fatty acid oxidation, using the Seahorse Bioanalyzer. Avocatin B inhibited leukemia cell fatty acid oxidation (>40% reduction in oxygen consumption at 10µM) and this occurred at a 10-fold less concentration than etomoxir, the standard experimental molecule used to probe this pathway. Further, avocatin B resulted in a 50% reduction in levels of NADPH, an important co-factor generated during fatty acid oxidation that participates in catabolic processes during cell proliferation. These results show that avocatin B accumulates in mitochondria to inhibit fatty acid oxidation and reduce NADPH to result in ROS-mediated leukemia cell apoptosis. This highlights a novel AML-therapeutic strategy by which mitochondria are targeted to impair cellular metabolism leading directly to AML cell death. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 364 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Blanca RUBÍ ◽  
Peter A. ANTINOZZI ◽  
Laura HERRERO ◽  
Hisamitsu ISHIHARA ◽  
Guillermina ASINS ◽  
...  

Lipid metabolism in the β-cell is critical for the regulation of insulin secretion. Pancreatic β-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured β-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5mM glucose (1.7-fold) and 15mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15mM glucose or 30mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15mM glucose (−40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the β-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in β-cells exposed to fatty acids.


2016 ◽  
Vol 291 (19) ◽  
pp. 10162-10172 ◽  
Author(s):  
Ja Young Kim-Muller ◽  
Young Jung R. Kim ◽  
Jason Fan ◽  
Shangang Zhao ◽  
Alexander S. Banks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document