Crystal structure of pentameric shell protein CsoS4B of Halothiobacillus neapolitanus α-carboxysome

2019 ◽  
Vol 515 (3) ◽  
pp. 510-515
Author(s):  
Yan-Yan Zhao ◽  
Yong-Liang Jiang ◽  
Yuxing Chen ◽  
Cong-Zhao Zhou ◽  
Qiong Li
2014 ◽  
Vol 70 (12) ◽  
pp. 1584-1590 ◽  
Author(s):  
Michael C. Thompson ◽  
Christopher S. Crowley ◽  
Jeffrey Kopstein ◽  
Thomas A. Bobik ◽  
Todd O. Yeates

The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 Å resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein–ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule.


Author(s):  
Kefang Liu ◽  
Yumin Meng ◽  
Yan Chai ◽  
Linjie Li ◽  
Huan Sun ◽  
...  

2016 ◽  
Vol 52 (28) ◽  
pp. 5041-5044 ◽  
Author(s):  
J. Jorda ◽  
D. J. Leibly ◽  
M. C. Thompson ◽  
T. O. Yeates

We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell.


2004 ◽  
Vol 186 (3) ◽  
pp. 623-630 ◽  
Author(s):  
Anthony K.-C. So ◽  
George S. Espie ◽  
Eric B. Williams ◽  
Jessup M. Shively ◽  
Sabine Heinhorst ◽  
...  

ABSTRACT A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO2 fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO2-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (ε-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO2 necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.


2021 ◽  
Author(s):  
Yaqi Sun ◽  
Victoria M. Harman ◽  
James R. Johnson ◽  
Taiyu Chen ◽  
Gregory F. Dykes ◽  
...  

AbstractCarboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO2-fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus neapolitanus serves as a model system in fundamental studies and synthetic engineering of carboxysomes. Here we adopt a QconCAT-based quantitative mass spectrometry to determine the absolute stoichiometric composition of native α-carboxysomes from H. neapolitanus. We further performed an in-depth comparison of the protein stoichiometry of native and recombinant α-carboxysomes heterologously generated in Escherichia coli to evaluate the structural variability and remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new contexts for biotechnological applications.


2002 ◽  
Vol 76 (23) ◽  
pp. 12211-12222 ◽  
Author(s):  
Jonghwa Kim ◽  
Xing Zhang ◽  
Victoria E. Centonze ◽  
Valorie D. Bowman ◽  
Simon Noble ◽  
...  

ABSTRACT The reovirus core particle is a molecular machine that mediates synthesis, capping, and export of the viral plus strand RNA transcripts. Its assembly and structure-function relationships remain to be well understood. Following the lead of previous studies with other Reoviridae family members, most notably orbiviruses and rotaviruses, we used recombinant baculoviruses to coexpress reovirus core proteins λ1, λ2, and σ2 in insect cells. The resulting core-like particles (CLPs) were purified and characterized. They were found to be similar to cores with regard to their sizes, morphologies, and protein compositions. Like cores, they could also be coated in vitro with the two major outer-capsid proteins, μ1 and σ3, to produce virion-like particles. Coexpression of core shell protein λ1 and core nodule protein σ2 was sufficient to yield CLPs that could withstand purification, whereas expression of λ1 alone was not, indicating a required role for σ2 as a previous study also suggested. In addition, CLPs that lacked λ2 (formed from λ1 and σ2 only) could not be coated with μ1 and σ3, indicating a required role for λ2 in the assembly of these outer-capsid proteins into particles. To extend the use of this system for understanding the core and its assembly, we addressed the hypothesis that the hydrophilic amino-terminal region of λ1, which adopts an extended arm-like conformation around each threefold axis in the reovirus core crystal structure, plays an important role in assembling the core shell. Using a series of λ1 deletion mutants, we showed that the amino-terminal 230 residues of λ1, including its zinc finger, are dispensable for CLP assembly. Residues in the 231-to-259 region of λ1, however, were required. The core crystal structure suggests that residues in the 231-to-259 region are necessary because they affect the interaction of λ1 with the threefold and/or fivefold copies of σ2. An effective system for studies of reovirus core structure, assembly, and functions is hereby established.


2006 ◽  
Vol 188 (23) ◽  
pp. 8087-8094 ◽  
Author(s):  
Sabine Heinhorst ◽  
Eric B. Williams ◽  
Fei Cai ◽  
C. Daniel Murin ◽  
Jessup M. Shively ◽  
...  

ABSTRACT In cyanobacteria and many chemolithotrophic bacteria, the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is sequestered into polyhedral protein bodies called carboxysomes. The carboxysome is believed to function as a microcompartment that enhances the catalytic efficacy of RubisCO by providing the enzyme with its substrate, CO2, through the action of the shell protein CsoSCA, which is a novel carbonic anhydrase. In the work reported here, the biochemical properties of purified, recombinant CsoSCA were studied, and the catalytic characteristics of the carbonic anhydrase for the CO2 hydration and bicarbonate dehydration reactions were compared with those of intact and ruptured carboxysomes. The low apparent catalytic rates measured for CsoSCA in intact carboxysomes suggest that the protein shell acts as a barrier for the CO2 that has been produced by CsoSCA through directional dehydration of cytoplasmic bicarbonate. This CO2 trap provides the sequestered RubisCO with ample substrate for efficient fixation and constitutes a means by which microcompartmentalization enhances the catalytic efficiency of this enzyme.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


Sign in / Sign up

Export Citation Format

Share Document