Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A. baumannii

2019 ◽  
Vol 518 (3) ◽  
pp. 472-478 ◽  
Author(s):  
Deepika Sharma ◽  
Monika Choudhary ◽  
Jitendraa Vashistt ◽  
Rahul Shrivastava ◽  
Gopal Singh Bisht
Author(s):  
Zhikai Ye ◽  
Haishuang Zhu ◽  
Shan Zhang ◽  
Jing Li ◽  
Jin Wang ◽  
...  

Designing the homogeneous assembly of the bio–nano interface to fine-tune the interactions between the nanoprobes and biological systems is of prime importance to improve the antimicrobial efficiency of nanomedicines.


2021 ◽  
Vol 22 (6) ◽  
pp. 2857
Author(s):  
Filomena Battista ◽  
Rosario Oliva ◽  
Pompea Del Vecchio ◽  
Roland Winter ◽  
Luigi Petraccone

Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.


2022 ◽  
Vol 1249 ◽  
pp. 131482
Author(s):  
Mina Răileanu ◽  
Barbara Lonetti ◽  
Charles-Louis Serpentini ◽  
Dominique Goudounèche ◽  
Laure Gibot ◽  
...  

2017 ◽  
Vol 233 (2) ◽  
pp. 1041-1050 ◽  
Author(s):  
Prasanta Ghosh ◽  
Arpita Bhoumik ◽  
Sudipta Saha ◽  
Sandipan Mukherjee ◽  
Sarfuddin Azmi ◽  
...  

2016 ◽  
Vol 60 (10) ◽  
pp. 6067-6075 ◽  
Author(s):  
Jun Hong ◽  
Jianye Hu ◽  
Fei Ke

ABSTRACTTachyplesin I is a 17-amino-acid cationic antimicrobial peptide (AMP) with a typical cyclic antiparallel β-sheet structure that is a promising therapeutic for infections, tumors, and viruses. To date, no bacterial resistance to tachyplesin I has been reported. To explore the safety of tachyplesin I as an antibacterial drug for wide clinical application, we experimentally induced bacterial resistance to tachyplesin I by using two selection procedures and studied the preliminary resistance mechanisms.Aeromonas hydrophilaXS91-4-1,Pseudomonas aeruginosaCGMCC1.2620, andEscherichia coliATCC 25922 and F41 showed resistance to tachyplesin I under long-term selection pressure with continuously increasing concentrations of tachyplesin I. In addition,P. aeruginosaandE. coliexhibited resistance to tachyplesin I under UV mutagenesis selection conditions. Cell growth and colony morphology were slightly different between control strains and strains with induced resistance. Cross-resistance to tachyplesin I and antimicrobial agents (cefoperazone and amikacin) or other AMPs (pexiganan, tachyplesin III, and polyphemusin I) was observed in some resistant mutants. Previous studies showed that extracellular protease-mediated degradation of AMPs induced bacterial resistance to AMPs. Our results indicated that the resistance mechanism ofP. aeruginosawas not entirely dependent on extracellular proteolytic degradation of tachyplesin I; however, tachyplesin I could induce increased proteolytic activity inP. aeruginosa. Most importantly, our findings raise serious concerns about the long-term risks associated with the development and clinical use of tachyplesin I.


Langmuir ◽  
2018 ◽  
Vol 34 (38) ◽  
pp. 11586-11592 ◽  
Author(s):  
Thomas Berry ◽  
Debarun Dutta ◽  
Renxun Chen ◽  
Andrea Leong ◽  
Huixin Wang ◽  
...  

2004 ◽  
Vol 172 (2) ◽  
pp. 1146-1156 ◽  
Author(s):  
Donald J. Davidson ◽  
Andrew J. Currie ◽  
Gregor S. D. Reid ◽  
Dawn M. E. Bowdish ◽  
Kelly L. MacDonald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document