scholarly journals Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae

2019 ◽  
Vol Volume 12 ◽  
pp. 2019-2030 ◽  
Author(s):  
Samer Swedan ◽  
Zaina Shubair ◽  
Ammar Almaaytah
Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2820 ◽  
Author(s):  
Yan Q. Xiong ◽  
Liang Li ◽  
Yufeng Zhou ◽  
Carl N. Kraus

Acinetobacter baumannii bacteremia represents a serious and increasing clinical problem due to the high mortality and treatment failures because of high rates of antibiotic resistance. Any additional new therapies for A. baumannii bacteremia would address a growing unmet medical need. ARV-1502 (designated as Chex1-Arg20 or A3-APO monomer in prior publications) is a designer proline-rich antimicrobial peptide chaperone protein inhibitor derived from insects and has demonstrated potent activity against multi-drug resistant (MDR) Gram-negative bacteria. In the current studies, we investigated the therapeutic efficacy of ARV-1502 administered intravenously (iv) alone and in combination with imipenem/cilastatin (IPM/CIL) in a mouse bacteremia model due to a MDR clinical A. baumannii strain, HUMC1. All ARV-1502 regimens (1.25, 2.5 and 5.0 mg/kg) significantly reduced bacterial density in the target tissues in a dose-dependent manner, as compared to the untreated control and IPM/CIL monotherapy (40 mg/kg) groups in the model. In addition, ARV-1502 treatment, even at the lowest dose, significantly improved survival vs. the control and IPM alone groups. As expected, IMP/CIL monotherapy had no therapeutic efficacy in the model, since the HUMC1 strain was resistant to IMP in vitro. However, the combination of ARV-1502 and IPM/CIL significantly enhanced the efficacy of ARV-1502, except the lowest dose of ARV-1502. The superior efficacy of ARV-1502 in the bacteremia model caused by MDR A. baumannii provides further support for studying this compound in severe infections caused by other MDR Gram-positive and -negative pathogens.


2019 ◽  
Vol 69 (11) ◽  
pp. 2015-2018 ◽  
Author(s):  
Ran Nir-Paz ◽  
Daniel Gelman ◽  
Ayman Khouri ◽  
Brittany M Sisson ◽  
Joseph Fackler ◽  
...  

Abstract A patient with a trauma-related left tibial infection associated with extensively drug-resistant Acinetobacter baumannii and multidrug-resistant Klebsiella pneumoniae was treated with bacteriophages and antibiotics. There was rapid tissue healing and positive culture eradication. As a result, the patient’s leg did not have to be amputated and he is undergoing rehabilitation.


2019 ◽  
Vol 10 ◽  
Author(s):  
Niamh Maire Mohan ◽  
Amine Zorgani ◽  
Gael Jalowicki ◽  
Alish Kerr ◽  
Nora Khaldi ◽  
...  

Author(s):  
Robert W. Deering ◽  
Kristen E. Whalen ◽  
Ivan Alvarez ◽  
Kathryn Daffinee ◽  
Maya Beganovic ◽  
...  

AbstractThe emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


2020 ◽  
Vol 22 (2) ◽  
pp. 128-136
Author(s):  
Dmitry V. Tapalskiy ◽  
T.A. Petrovskaya ◽  
A.I. Kozlova ◽  
Mikhail V. Edelstein

Objective. To reveal antibiotics being capable of potentiating the antimicrobial activity of colistin against multidrug- and extensively drug-resistant strains of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. Materials and Methods. The minimum inhibitory concentrations (MIC) of colistin alone and in combination with fixed concentrations of antibiotics of different groups were determined for 272 multidrug- and extensively drug-resistant strains of K. pneumoniae, A. baumannii and P. aeruginosa. Bactericidal activity of colistin, carbapenems, clarithromycin and their combinations were also determined at fixed PK/PD breakpoint concentrations of antibiotics. Results. Potentiation of colistin antibacterial activity in the presence of fixed concentration of rifampicin (0.5 mg/L) was observed as a 4–16-fold MIC decrease for K. pneumoniae and A. baumannii. In the presence of fixed concentrations of azithromycin (2 mg/L) or clarithromycin (1 mg/L), the colistin MICs decreased 64–512 times for K. pneumoniae, 4–32 times for A. baumannii, 16–64 times for P. aeruginosa. Two- or more-fold reduction of MIC of colistin in the presence of 1 mg/L clarithromycin was observed for 85.2% of K. pneumoniae, 86.3% of A. baumannii and 60.2% of P. aeruginosa strains. In the presence of 1 mg/L clarithromycin and 8 mg/L meropenem, the potentiation effect was enhanced and was observed for an even larger percent of isolates: 96.1% K. pneumoniae, 98.0% A. baumannii and 61.3% P. aeruginosa. Colistin-based combinations with clarithromycin-meropenem and clarithromycin-doripenem were bactericidal against most isolates of A. baumannii and P. aeruginosa (91.4–100%), and against colistin-sensitive K. pneumoniae (95.3%) and colistin-resistant K. pneumoniae (79.1%). Conclusions. The ability of macrolides to significantly potentiate the colistin antimicrobial activity against both colistin-sensitive and colistin-resistant strains of K. pneumoniae, A. baumannii and P. aeruginosa was shown. This potentiation effect was enhanced in the presence of carbapenems. The most potent bactericidal activity was revealed with dual and triple combinations of colistin-clarithromycin and colistinclarithromycin-carbapenems.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e69646 ◽  
Author(s):  
Kimberly M. Carlson-Banning ◽  
Andrew Chou ◽  
Zhen Liu ◽  
Richard J. Hamill ◽  
Yongcheng Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document