scholarly journals Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation

Author(s):  
W.W. Zhang ◽  
R. Xue ◽  
T.Y. Mi ◽  
X.M. Shen ◽  
J.C. Li ◽  
...  
1992 ◽  
Vol 292 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Consuelo González-Manchón ◽  
Angeles Martín-Requero ◽  
Matilde S. Ayuso ◽  
Roberto Parrilla

2000 ◽  
Vol 113 (3) ◽  
pp. 533-544
Author(s):  
I.V. Karpichev ◽  
G.M. Small

We, and others, have identified a novel Saccharomyces cerevisiae peroxisomal protein that belongs to the isomerase/hydratase family. The protein, named Dci1p, shares 50% identity with Eci1p, a delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase that acts as an auxiliary enzyme in the beta-oxidation of unsaturated fatty acids. Both of these proteins are localized to peroxisomes, and both contain motifs at their amino- and carboxyl termini that resemble peroxisome targeting signals (PTS) 1 and 2. However, we demonstrate that the putative type 1 signaling motif is not required for the peroxisomal localization of either of these proteins. Furthermore, the correct targeting of Eci1p and Dci1p occurs in the absence of the receptors for the type 1 or type 2 peroxisome targeting pathway. Together, these data suggest a novel mechanism for the intracellular targeting of these peroxisomal proteins.


1993 ◽  
Vol 265 (2) ◽  
pp. R414-R419 ◽  
Author(s):  
T. Xia ◽  
N. Mostafa ◽  
B. G. Bhat ◽  
G. L. Florant ◽  
R. A. Coleman

In the suckling rat, chick embryo, and hibernating marmot, fatty acids provide the major source of energy, and despite the high rate of hepatic beta-oxidation, these animals selectively retain long-chain polyunsaturated derivatives of C18:2n-6 and C18:3n-3. To determine whether the hepatic microsomal activity monoacylglycerol acyltransferase (MGAT) (EC 2.3.1.22) could provide a mechanism to selectively acylate monoacylglycerols that contain essential fatty acids, we tested the ability of MGAT activity from each of the three species to acylate sn-2-monoC18:1-, sn-2-monoC18:2-, sn-2-monoC18:3-, and sn-2-monoC20:4-glycerols. Hepatic MGAT activity acylated sn-2-monoC18:3-glycerol and sn-2-monoC18:2-glycerol in preference to sn-2-monoC18:1-glycerol in each of the three different lipolytic animals. MGAT's acyl group specificity could not be explained by invoking differences in membrane fluidity because the apparent affinity for sn-2-monoC20:4-glycerol was not increased. Further, sn-2-monoC18:3-glycerol remained a preferred substrate under assay conditions when both the C18:3 and C18:1 species were present in equal amounts. As would be predicted in the presence of high activity of a selective MGAT, the hepatic glycerolipids from neonatal rats showed increases in dienoic, trienoic, and C22:6 fatty acids and relative decreases in monoenoic, saturated, and C20:4 fatty acids. We hypothesize that, during lipolysis, the reacylation of sn-2-monoacylglycerols by MGAT may provide a mechanism by which essential fatty acids are retained within specific tissues.


Sign in / Sign up

Export Citation Format

Share Document