scholarly journals Prolyl oligopeptidase acts as a link between chaperone-mediated autophagy and macroautophagy

2021 ◽  
pp. 114899
Author(s):  
H. Cui ◽  
S. Norrbacka ◽  
T.T. Myöhänen
2019 ◽  
Author(s):  
Kshitiz Kz ◽  
Junaid Afzal ◽  
Archer Hamidzadeh ◽  
Hao Chang ◽  
Maimon E. Hubbi ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 418.1-418
Author(s):  
I. Lorenzo ◽  
U. Nogueira-Recalde ◽  
N. Oreiro ◽  
J. A. Pinto Tasende ◽  
M. Lotz ◽  
...  

Background:In Osteoarthritis (OA), defects in macroautophagy (autophagy) are evident and precede joint damage. Indeed, pharmacological activation of autophagy protects against joint damage.Objectives:Therefore, identifying hallmarks associated with specific autophagy subtypes could shed light to fundamental mechanisms of joint disease.Methods:A comparative analysis of 35 autophagy genes was performed from blood from the Prospective OA Cohort of A Coruña (PROCOAC). Non-OA subjects (Age:61,44±1,16 years; BMI:25,25±0,52; Females, n=18) and Knee OA subjects (Age:65,50±1,05 years; BMI:29,55±0,67; Females, n=18, OA grade III-IV) were profiled using an autophagy gene expression array by SYBR green qPCR. Confirmatory studies were performed in blood from Non-OA subjects (Age:60,13±1,12 years; BMI:24,85±0,59; Females; n=30) and Knee-OA subjects (Age:68,4±1,11 years; BMI:29,65±0,55; Females; n=30, OA grade III-IV) by Taqman qPCR. The candidate gene was evaluated in human knee joint tissues (cartilage, meniscus, ligaments, synovium) with different KL grades (Age: KL0=28,3±4,50; KL2=77±6,08; KL4=62,3±3,05, n=3) and in both spontaneous aging (2, 6, 12, 18, and 30 months old, n=3) and surgically-induced OA (10 weeks after surgery, n=4) in mice by IHC. The functional consequences were studied in T/C28a2 and primary human OA chondrocytes. Autophagy, FOXO, Chaperone-mediated autophagy (CMA), inflammation, and cellular senescence were analyzing by gene and protein expression. Moreover, oxidative stress and cell death were evaluated by FACS. The contribution of CMA to chondrocyte homeostasis was evaluated by studying the capacity of CMA to restore proteostasis upon autophagy deficiency by siATG5.Results:15 autophagy-related genes were significantly downregulated in blood from knee OA patients compared to non-OA patients. No significant upregulation was found for any studied gene, although a trend towards upregulation was found in genes involved in the mTOR pathway. Four key autophagy-related genes, including ATG16L2, ATG12, ATG4B and MAP1LC3B were found downregulated in knee OA patients. Interestingly, HSP90AA1 and HSPA8, CMA markers involved in stress response and protein folding, were downregulated. Confirmatory studies showed a significant downregulation of MAP1LC3B and HSP90AA1 in blood from knee OA patients. Remarkably, HSP90A was found reduced in femoral cartilage (medial and lateral), meniscus and ACL. Moreover, this reduction was higher in medial cartilage compared to lateral cartilage and meniscus, while in synovial membrane, HSP90A expression was found increased. This expression signature was dependent on OA grade severity. In addition, we observed a decrease of HSP90A with aging and OA in mice. The functional consequences of HSP90AA1 gene silencing are related to an increase in NFκB, MMP13, and p16 expression. Interestingly, LAMP2A, a key CMA mediator, HSPA8, MAP1LC3B and FoxO1 expression were upregulated in chondrocytes with HSP90AA1 deficiency, which might indicate an early response to maintain homeostasis. On the other hand, LAMP2A protein is decreased upon HSP90AA1 deficiency, while LC3II and p62 were increased, indicating a failure in the autophagy flux that leads to impaired lysosomal degradation.Moreover, p21, p16 and prbS6 were increased upon HSP90AA1 deficiency, besides increasing mitochondrial ROS production and apoptosis. ATG5 silencing blocks autophagy by reducing LC3II and increasing prbs6, p62, p16 and p21. Interestingly, LAMP2A and HSP90A were found increased, indicating a possible compensative activation of CMA in response to autophagy defects. These results support that HSP90A has an important role in chondrocyte homeostasis by participating in the cross-talk between CMA and autophagy.Conclusion:Taking together, we identified HSP90A, a CMA regulator, as critical in chondrocyte homeostasis. These disease mechanisms are relevant in OA and constitute hallmarks potentially useful to prevent OA progression.References:[1]Caramés B, et al. Arthritis Rheum. 2010, 2015;[2]Caramés B, et al. Ann Rheum Dis. 2012.Disclosure of Interests:None declared


Author(s):  
Zhaozhong Liao ◽  
Bin Wang ◽  
Wenjing Liu ◽  
Qian Xu ◽  
Lin Hou ◽  
...  

2017 ◽  
Vol 217 (2) ◽  
pp. 635-647 ◽  
Author(s):  
Zhenwei Gong ◽  
Inmaculada Tasset ◽  
Antonio Diaz ◽  
Jaime Anguiano ◽  
Emir Tas ◽  
...  

Chaperone-mediated autophagy (CMA) serves as quality control during stress conditions through selective degradation of cytosolic proteins in lysosomes. Humanin (HN) is a mitochondria-associated peptide that offers cytoprotective, cardioprotective, and neuroprotective effects in vivo and in vitro. In this study, we demonstrate that HN directly activates CMA by increasing substrate binding and translocation into lysosomes. The potent HN analogue HNG protects from stressor-induced cell death in fibroblasts, cardiomyoblasts, neuronal cells, and primary cardiomyocytes. The protective effects are lost in CMA-deficient cells, suggesting that they are mediated through the activation of CMA. We identified that a fraction of endogenous HN is present at the cytosolic side of the lysosomal membrane, where it interacts with heat shock protein 90 (HSP90) and stabilizes binding of this chaperone to CMA substrates as they bind to the membrane. Inhibition of HSP90 blocks the effect of HNG on substrate translocation and abolishes the cytoprotective effects. Our study provides a novel mechanism by which HN exerts its cardioprotective and neuroprotective effects.


Biochimie ◽  
2012 ◽  
Vol 94 (9) ◽  
pp. 1849-1859 ◽  
Author(s):  
Jofre Tenorio-Laranga ◽  
Pekka T. Männistö ◽  
Markus Storvik ◽  
Pieter Van der Veken ◽  
J. Arturo García-Horsman

2010 ◽  
Vol 19 (16) ◽  
pp. 3219-3232 ◽  
Author(s):  
C. Rothenberg ◽  
D. Srinivasan ◽  
L. Mah ◽  
S. Kaushik ◽  
C. M. Peterhoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document