Long-term effects of oxytetracycline (OTC) on the granule-based anammox: Process performance and occurrence of antibiotic resistance genes

2017 ◽  
Vol 127 ◽  
pp. 110-118 ◽  
Author(s):  
Zhi-Jian Shi ◽  
Hai-Yan Hu ◽  
Yang-Yang Shen ◽  
Jia-Jia Xu ◽  
Man-Ling Shi ◽  
...  
2021 ◽  
Vol 270 ◽  
pp. 116278
Author(s):  
Yinglong Su ◽  
Zhongjian Zhang ◽  
Jundong Zhu ◽  
Jianhong Shi ◽  
Huawei Wei ◽  
...  

2020 ◽  
Vol 41 (10) ◽  
pp. 1162-1168
Author(s):  
Shawn E. Hawken ◽  
Mary K. Hayden ◽  
Karen Lolans ◽  
Rachel D. Yelin ◽  
Robert A. Weinstein ◽  
...  

AbstractObjective:Cohorting patients who are colonized or infected with multidrug-resistant organisms (MDROs) protects uncolonized patients from acquiring MDROs in healthcare settings. The potential for cross transmission within the cohort and the possibility of colonized patients acquiring secondary isolates with additional antibiotic resistance traits is often neglected. We searched for evidence of cross transmission of KPC+ Klebsiella pneumoniae (KPC-Kp) colonization among cohorted patients in a long-term acute-care hospital (LTACH), and we evaluated the impact of secondary acquisitions on resistance potential.Design:Genomic epidemiological investigation.Setting:A high-prevalence LTACH during a bundled intervention that included cohorting KPC-Kp–positive patients.Methods:Whole-genome sequencing (WGS) and location data were analyzed to identify potential cases of cross transmission between cohorted patients.Results:Secondary KPC-Kp isolates from 19 of 28 admission-positive patients were more closely related to another patient’s isolate than to their own admission isolate. Of these 19 cases, 14 showed strong genomic evidence for cross transmission (<10 single nucleotide variants or SNVs), and most of these patients occupied shared cohort floors (12 patients) or rooms (4 patients) at the same time. Of the 14 patients with strong genomic evidence of acquisition, 12 acquired antibiotic resistance genes not found in their primary isolates.Conclusions:Acquisition of secondary KPC-Kp isolates carrying distinct antibiotic resistance genes was detected in nearly half of cohorted patients. These results highlight the importance of healthcare provider adherence to infection prevention protocols within cohort locations, and they indicate the need for future studies to assess whether multiple-strain acquisition increases risk of adverse patient outcomes.


Author(s):  
Filip Gamoń ◽  
Grzegorz Cema ◽  
Aleksandra Ziembińska-Buczyńska

AbstractAnaerobic ammonium oxidation (anammox) is one of the most promising processes for the treatment of ammonium-rich wastewater. It is more effective, cheaper, and more environmentally friendly than the conventional process currently in use for nitrogen removal. Unfortunately, anammox bacteria are sensitive to various substances, including heavy metals and organic matter commonly found in the wastewater treatment plants (WWTPs). Of these deleterious substances, antibiotics are recognized to be important. For decades, the increasing consumption of antibiotics has led to the increased occurrence of antibiotics in the aquatic environment, including wastewater. One of the most important issues related to antibiotic pollution is the generation and transfer of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Here, we will discuss the effect of short- and long-term exposure of the anammox process to antibiotic pollutants; with a special focus on the activity of the anammox bacteria, biomass properties, community structures, the presence of antibiotic resistance genes and combined effect of antibiotics with other substances commonly found in wastewater. Further, the defense mechanisms according to which bacteria adapt against antibiotic stress are speculated upon. This review aims to facilitate a better understanding of the influence of antibiotics and other co-pollutants on the anammox process and to highlight future avenues of research to target gaps in the knowledge.


Author(s):  
Bingbing Du ◽  
Qingxiang Yang ◽  
Ruifei Wang ◽  
Ruimin Wang ◽  
Qiang Wang ◽  
...  

The removal of antibiotics and widespread of antibiotic resistance genes (ARGs) have received continuous attention due to the possible threats to environment. However, little information is available on the evolution of antibiotic resistance and the relationship between ARGs and microbial communities under long-term exposure to sub-inhibitory concentrations of antibiotics. In our study, two laboratory-scale anoxic-aerobic wastewater treatment systems were established and operated for 420 days to investigate the evolution of antibiotic resistance under exposure of 5 mg·L−1 tetracycline (TC) or 5 mg·L−1 TC and 1 mg·L−1 sulfamethoxazole (SMX). The average removal rates of TC and SMX were about 59% and 72%, respectively. The abundance of the main ARGs responsible for resistance to TC and SMX increased obviously after antibiotics addition, especially when TC and SMX in combination (increased 3.20-fold). The tetC and sul1 genes were the predominant genes in the development of TC and SMX resistance, in which gene sul1 had the highest abundance among all the detected ARGs. Network analysis revealed that under antibiotic pressure, the core bacterial groups carrying multiple ARGs formed and concentrated in about 20 genera such as Dechloromonas, Candidatus Accumulibacter, Aeromonas, Rubrivivax, in which intI1 played important roles in transferring various ARGs except sul3.


Sign in / Sign up

Export Citation Format

Share Document