scholarly journals A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury

2021 ◽  
Vol 6 (8) ◽  
pp. 2523-2534
Author(s):  
Chenggui Wang ◽  
Min Wang ◽  
Kaishun Xia ◽  
Jingkai Wang ◽  
Feng Cheng ◽  
...  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hong Fan ◽  
Hai-Bin Tang ◽  
Zhe Chen ◽  
Hu-Qing Wang ◽  
Lei Zhang ◽  
...  

Abstract Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.


Marine Drugs ◽  
2016 ◽  
Vol 14 (9) ◽  
pp. 160 ◽  
Author(s):  
Chun-Hong Chen ◽  
Nan-Fu Chen ◽  
Chien-Wei Feng ◽  
Shu-Yu Cheng ◽  
Han-Chun Hung ◽  
...  

2021 ◽  
Author(s):  
Yu-ri Hong ◽  
Eun-hee Lee ◽  
Ki-su Park ◽  
Mun Han ◽  
Kyoung-Tae Kim ◽  
...  

Abstract Spinal cord injury (SCI) is associated with limited functional recovery. Despite advances in neuroscience, realistic therapeutic treatments for SCI remain unavailable. In this study, the effects of non-invasive ultrasound (US) treatment on behavior and inflammatory responses were evaluated in a rat model of SCI. Adult female Sprague–Dawley rats were subjected to spinal cord contusion injury. Two different US parameters (SCIU5: 5% and SCIU40: 40% duty cycle) were applied, and their effects on behavioral recovery after SCI were quantified. Tissue and neuronal responses were detected. Immunofluorescence was used to detect inflammatory markers. In the rat model of SCI, motor function was more effectively restored, and the lesion cavity area was smaller in the SCIU5 group. Furthermore, the SCIU5 protocol elicited an anti-inflammatory response at the injury site by reducing degenerative FJC-labeled neurons, macrophage/microglia activation, and infiltration. Thus, the lesion area decreased, and tissue density increased. Meanwhile, the SCIU40 protocol did not improve motor function or induce an anti-inflammatory response at the injury site. The SCIU5 protocol effectively accelerated the rate of improved exercise performance in the rat model while reducing inflammation. Accordingly, appropriate US stimulation may represent a promising treatment modality for SCI with beneficial anti-inflammatory effects.


2021 ◽  
Vol 22 (24) ◽  
pp. 13672
Author(s):  
Gang-Un Kim ◽  
Soo-Eun Sung ◽  
Kyung-Ku Kang ◽  
Joo-Hee Choi ◽  
Sijoon Lee ◽  
...  

Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.


2018 ◽  
Vol 26 (7) ◽  
pp. 1756-1770 ◽  
Author(s):  
Jonghyuck Park ◽  
Joseph T. Decker ◽  
Daniel J. Margul ◽  
Dominique R. Smith ◽  
Brian J. Cummings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document