scholarly journals Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hong Fan ◽  
Hai-Bin Tang ◽  
Zhe Chen ◽  
Hu-Qing Wang ◽  
Lei Zhang ◽  
...  

Abstract Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.

Marine Drugs ◽  
2016 ◽  
Vol 14 (9) ◽  
pp. 160 ◽  
Author(s):  
Chun-Hong Chen ◽  
Nan-Fu Chen ◽  
Chien-Wei Feng ◽  
Shu-Yu Cheng ◽  
Han-Chun Hung ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dayu Pan ◽  
Yongjin Li ◽  
Fuhan Yang ◽  
Zenghui Lv ◽  
Shibo Zhu ◽  
...  

Abstract Background Traumatic spinal cord injury (SCI) is a severely disabling disease that leads to loss of sensation, motor, and autonomic function. As exosomes have great potential in diagnosis, prognosis, and treatment of SCI because of their ability to easily cross the blood–brain barrier, the function of Schwann cell-derived exosomes (SCDEs) is still largely unknown. Methods A T10 spinal cord contusion was established in adult female mice. SCDEs were injected into the tail veins of mice three times a week for 4 weeks after the induction of SCI, and the control group was injected with PBS. High-resolution transmission electron microscope and western blot were used to characterize the SCDEs. Toll-like receptor 2 (TLR2) expression on astrocytes, chondroitin sulfate proteoglycans (CSPGs) deposition and neurological function recovery were measured in the spinal cord tissues of each group by immunofluorescence staining of TLR2, GFAP, CS56, 5-HT, and β-III-tublin, respectively. TLR2f/f mice were crossed to the GFAP-Cre strain to generate astrocyte specific TLR2 knockout mice (TLR2−/−). Finally, western blot analysis was used to determine the expression of signaling proteins and IKKβ inhibitor SC-514 was used to validate the involved signaling pathway. Results Here, we found that TLR2 increased significantly on astrocytes post-SCI. SCDEs treatment can promote functional recovery and induce the expression of TLR2 on astrocytes accompanied with decreased CSPGs deposition. The specific knockout of TLR2 on astrocytes abolished the decreasing CSPGs deposition and neurological functional recovery post-SCI. In addition, the signaling pathway of NF-κB/PI3K involved in the TLR2 activation was validated by western blot. Furthermore, IKKβ inhibitor SC-514 was also used to validate this signaling pathway. Conclusion Thus, our results uncovered that SCDEs can promote functional recovery of mice post-SCI by decreasing the CSPGs deposition via increasing the TLR2 expression on astrocytes through NF-κB/PI3K signaling pathway.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Hong Fan ◽  
Hai-Bin Tang ◽  
Le-Qun Shan ◽  
Shi-Chang Liu ◽  
Da-Geng Huang ◽  
...  

Abstract Background Oligodendrocytes (OLs) death after spinal cord injury (SCI) contributes to demyelination, even leading to a permanent neurological deficit. Besides apoptosis, our previous study demonstrated that OLs underwent receptor-interacting serine-threonine kinase 3(RIP3)/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. Considering that necroptosis is always accompanied with pro-inflammatory response and quercetin has long been used as anti-inflammatory agent, in the present study we investigated whether quercetin could inhibit necroptosis of OLs and suppress the M1 macrophages/microglia-mediated immune response after SCI as well as the possible mechanism. Methods In this study, we applied quercetin, an important flavonoid component of various herbs, to treat rats with SCI and rats injected with saline were employed as the control group. Locomotor functional recovery was evaluated using Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay. In vivo, the necroptosis, apoptosis, and regeneration of OLs were detected by immunohistochemistry, 5′-bromo-2′-deoxyuridine (BrdU) incorporation. The loss of myelin and axons after SCI were evaluated by Luxol fast blue (LFB) staining, immunohistochemistry, and electron microscopic study. The polarization of macrophages/microglia after SCI and the underlying mechanisms were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. In vitro, the ATP and reactive oxygen species (ROS) level examination, propidium iodide (PI) labeling, and Western blotting were used to analyze the necroptosis of cultured OLs, while the signaling pathways-mediated polarization of cultured macrophages/microglia was detected by qRT-PCR and Western blotting. Results We demonstrated that quercetin treatment improved functional recovery in rats after SCI. We then found that quercetin significantly reduced necroptosis of OLs after SCI without influencing apoptosis and regeneration of OLs. Meanwhile, myelin loss and axon loss were also significantly reduced in quercetin-treated rats, as compared to SCI + saline control. Further, we revealed that quercetin could suppress macrophages/microglia polarized to M1 phenotype through inhibition of STAT1 and NF-κB pathway in vivo and in vitro, which contributes to the decreased necroptosis of OLs. Conclusions Quercetin treatment alleviated necroptosis of OLs partially by inhibiting M1 macrophages/microglia polarization after SCI. Our findings suggest that necroptosis of OLs may be a potential therapeutic target for clinical SCI.


2021 ◽  
Author(s):  
Yu-ri Hong ◽  
Eun-hee Lee ◽  
Ki-su Park ◽  
Mun Han ◽  
Kyoung-Tae Kim ◽  
...  

Abstract Spinal cord injury (SCI) is associated with limited functional recovery. Despite advances in neuroscience, realistic therapeutic treatments for SCI remain unavailable. In this study, the effects of non-invasive ultrasound (US) treatment on behavior and inflammatory responses were evaluated in a rat model of SCI. Adult female Sprague–Dawley rats were subjected to spinal cord contusion injury. Two different US parameters (SCIU5: 5% and SCIU40: 40% duty cycle) were applied, and their effects on behavioral recovery after SCI were quantified. Tissue and neuronal responses were detected. Immunofluorescence was used to detect inflammatory markers. In the rat model of SCI, motor function was more effectively restored, and the lesion cavity area was smaller in the SCIU5 group. Furthermore, the SCIU5 protocol elicited an anti-inflammatory response at the injury site by reducing degenerative FJC-labeled neurons, macrophage/microglia activation, and infiltration. Thus, the lesion area decreased, and tissue density increased. Meanwhile, the SCIU40 protocol did not improve motor function or induce an anti-inflammatory response at the injury site. The SCIU5 protocol effectively accelerated the rate of improved exercise performance in the rat model while reducing inflammation. Accordingly, appropriate US stimulation may represent a promising treatment modality for SCI with beneficial anti-inflammatory effects.


2018 ◽  
Vol 26 (7) ◽  
pp. 1756-1770 ◽  
Author(s):  
Jonghyuck Park ◽  
Joseph T. Decker ◽  
Daniel J. Margul ◽  
Dominique R. Smith ◽  
Brian J. Cummings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document