scholarly journals Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties

Author(s):  
Fatih Kurtuldu ◽  
Nurshen Mutlu ◽  
Aldo R. Boccaccini ◽  
Dušan Galusek
Keyword(s):  
2008 ◽  
Vol 24 (3) ◽  
pp. 714-719 ◽  
Author(s):  
X. Tong ◽  
A. Trivedi ◽  
H. Jia ◽  
M. Zhang ◽  
P. Wang

2021 ◽  
Vol 10 (1) ◽  
pp. 208-218
Author(s):  
Fatemeh Ghavidel ◽  
Afshin Javadi ◽  
Navideh Anarjan ◽  
Hoda Jafarizadeh-Malmiri

Abstract Subcritical water was used to provide propolis oil in water (O/W) nanoemulsions. To monitor and detect the main bioactive compounds of the prepared propolis extract, gas chromatography demonstrated that there were 47 bioactive materials in the propolis extract, among which pinostrobin chalcone and pinocembrin were the two key components. Effectiveness of two processing parameters such as the amount of saponin (0.5–2.0 g) and propolis extract (0.1–0.6 g), on particle size, polydispersity index (PDI), zeta potential, and antioxidant activity of the provided nanoemulsions, was evaluated. Results demonstrated that more desirable propolis O/W nanoemulsion, with minimum particle size (144.06 nm) and PDI (0.286), and maximum zeta potential (−21.71 mV) and antioxidant activity (90.86%) were made using 0.50 g of saponin and 0.53 g of propolis extract. Further analysis revealed that the prepared nanoemulsion based on optimum processing conditions had spherical shaped propolis nanodroplets in the colloidal solution with turbidity and maximum broad absorption peak of 0.08 a.u. and 292 nm, respectively. The prepared nanoemulsion had high antibacterial activity against both selected bacteria strains namely, Staphylococcus aureus and Escherichia coli.


Author(s):  
Diana B. Sequeira ◽  
Ana Rafaela Oliveira ◽  
Catarina M. Seabra ◽  
Paulo J. Palma ◽  
Carlos Ramos ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 30
Author(s):  
Angelica Bertacci ◽  
Daniele Moro ◽  
Gianfranco Ulian ◽  
Giovanni Valdrè

Recently, endodontic sealers based on injectable bioactive materials were proposed to improve the filling of anatomical irregularities during root canal obturation. In this context, this preliminary work investigated the possibility of realizing a new calcium phosphate-based composite sealer for root canal filling with an optimized composition on setting kinetics and dentin tubules occlusion. Several calcium phosphate/liquid phase mixtures were initially evaluated for their workability, finding two suitable formulations. Both of them contained 66 wt.% of a nano-apatite-based cement (solid powdered phase). The liquid phase (34 wt.%) comprised 13.6% propanediol and 20.4% PEG 1000 (formulation 1), and formulation 2 comprised 27.2% glycerin and 6.8% PEG 200 (formulation 2). Then, these formulations were tested by means of permeability measurements and observation by scanning electron microscopy of treated model dentin samples. Both formulations succeeded in occluding dentinal tubules: the first one was able to create a full-bodied layer on dentin surface and, moreover, to resist, at least to a large extent, against citric acid attack. The second one showed a lower effectiveness after citric acid exposure. The composite compound that better satisfied the overall required characteristics of use, workability and sealing capacity was formulation 1.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 760
Author(s):  
Maria Chiara Sportelli ◽  
Antonio Ancona ◽  
Annalisa Volpe ◽  
Caterina Gaudiuso ◽  
Valentina Lavicita ◽  
...  

Designing bioactive materials, with controlled metal ion release, exerting a significant biological action and associated to low toxicity for humans, is nowadays one of the most important challenges for our community. The most looked-for nanoantimicrobials are capable of releasing metal species with defined kinetic profiles, either by slowing down or inhibiting bacterial growth and pathogenic microorganism diffusion. In this study, laser ablation synthesis in solution (LASiS) has been used to produce bioactive Ag-based nanocolloids, in isopropyl alcohol, which can be used as water-insoluble nano-reservoirs in composite materials like poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Infrared spectroscopy was used to evaluate the chemical state of pristine polymer and final composite material, thus providing useful information about synthesis processes, as well as storage and processing conditions. Transmission electron microscopy was exploited to study the morphology of nano-colloids, along with UV-Vis for bulk chemical characterization, highlighting the presence of spheroidal particles with average diameter around 12 nm. Electro-thermal atomic absorption spectroscopy was used to investigate metal ion release from Ag-modified products, showing a maximum release around 60 ppb, which ensures an efficient antimicrobial activity, being much lower than what recommended by health institutions. Analytical spectroscopy results were matched with bioactivity tests carried out on target microorganisms of food spoilage.


2014 ◽  
Vol 70 (6) ◽  
pp. 1032-1039 ◽  
Author(s):  
Zufarzaana Zulkeflee ◽  
Antoni Sánchez

An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.


1999 ◽  
Vol 576 ◽  
Author(s):  
Masaaki Kubo ◽  
Seisuke Takashima ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
...  

ABSTRACTHydrated silica rich Si-OH and Si-0- groups serve in a body environment as sites for nucleation of apatite, and are known as an essential chemical species for bioactive materials. Organic polymers having surface modified with the hydrated silica will show bioactivity: bone tissues grow toward the apatite layer and bond to materials. Thus MOPS-M (3-methacryloxypropyltrimethoxysilane) was grafted under emulsion polymerization procedure to high density polyethylene (HDPE), poly (vinyl chloride) (PVC) and polyamide (PA) substrates to examine in vitro deposition of apatite (bioactivity) after soaking in a simulated body fluid (Kokubo solution). Bioactivity was confirmed for the grafted PVC and PA substrates and discussed in terms of contact angle and relative amount of grafted silane molecules.


Sign in / Sign up

Export Citation Format

Share Document