Erythrocytes express chondroitin sulphate/dermatan sulphate, which undergoes quantitative changes during diabetes and mediate erythrocyte adhesion to extracellular matrix components

Biochimie ◽  
2012 ◽  
Vol 94 (6) ◽  
pp. 1347-1355 ◽  
Author(s):  
C.B. Srikanth ◽  
P.V. Salimath ◽  
C.D. Nandini
1983 ◽  
Vol 61 (1) ◽  
pp. 299-323
Author(s):  
C.A. Erickson ◽  
E.A. Turley

Extracellular matrix components such as collagen, fibronectin and sulphated glycosaminoglycans can act as substrata that promote neural crest motility in vitro, in the absence of serum. The cells appear to be less adhesive and move more randomly on collagen or chondroitin sulphate substrata than on fibronectin substrata. Cells do not spread or become motile on plastic dishes to which hyaluronate has been bound, presumably owing to weak adhesion to this surface. Hyaluronate added to the medium alone has little effect on cell motility. When combinations of matrix molecules are used as substrata, however, the presence of fibronectin increases spreading, directional persistence of cell motility and speed of movement above that observed on collagen alone. When added to fibronectin, chondroitin sulphate appears to reduce adhesions slightly, since the cells are more rounded. Hyaluronate added in the medium significantly reduces the extent, speed and directionality of movement on fibronectin substrata. The presence of collagen in combination with fibronectin plus glycosaminoglycans does not have a noticeable effect on cell motile behaviour, beyond that observed with fibronectin alone. The effects of combinations of matrix compounds on neural crest cell motility are thus predictable, and can be explained in terms of the known adhesive properties and reported binding interactions of these molecules. These studies in vitro are compared with neural crest cell motility in vivo.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.


2006 ◽  
Vol 12 (4) ◽  
pp. 831-842 ◽  
Author(s):  
Sepideh Heydarkhan-Hagvall ◽  
Maricris Esguerra ◽  
Gisela Helenius ◽  
Rigmor Söderberg ◽  
Bengt R. Johansson ◽  
...  

Soft Matter ◽  
2015 ◽  
Vol 11 (38) ◽  
pp. 7648-7655 ◽  
Author(s):  
Paul Lee ◽  
Katelyn Tran ◽  
Gan Zhou ◽  
Asheesh Bedi ◽  
Namdev B. Shelke ◽  
...  

A biphasic micro and nanostructured scaffold with hydroxyapatite and extracellular matrix components was created for the regeneration of osteochondral tissue. Material cues of the biphasic scaffold supported differentiation of bone marrow stromal cells in both osteogenic and chondrogenic lineages.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pawel Olczyk ◽  
Łukasz Mencner ◽  
Katarzyna Komosinska-Vassev

Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors’ action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.


2000 ◽  
Vol 437 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Hyeon Joo Jeong ◽  
Sun Hee Sung ◽  
Soon Won Hong ◽  
Jang Il Moon ◽  
Soon Il Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document