Curcumin: Natural Antimicrobial and Anti Inflammatory Agent

Author(s):  
Pehlivanović Belma ◽  
Čaklovica Kenan ◽  
Lagumdžija Dina ◽  
Omerović Naida ◽  
Žiga Smajić Nermina ◽  
...  

The pursuance of novel antimicrobial and anti-inflammatory agents has been expanding due to a significant need for more efficient pharmacotherapy of various infections and chronic diseases. During the last decade, pharmacokinetics, pharmacodynamics and pharmacological properties of curcumin have been extensively studied. The aim of the present study was to evaluate the antibacterial activity of curcumin against both Gram-positive and Gram-negative bacteria as well as its antifungal activity by using in vitro agar well diffusion assay. Moreover, the anti-inflammatory activity of curcumin was determined with in vitro assay of inhibition of protein denaturation. Results demonstrated wide antimicrobial activity of curcumin upon all of the test bacteria and fungi. The strongest activity of curcumin was observed at a concentration of 0.50 mg/ml against S. aureus, L. monocytogenes, E. coli, P. aeruginosa and C. albicans, resulting in a maximum zone of inhibition of 14.7 mm, 14.3 mm, 13.7 mm, 10.7 mm and 10.7 mm, respectively. Findings suggested that the antimicrobial activity of curcuminis dependent upon the concentrations. Furthermore, results demonstrated high effectiveness of curcumin compared to standard acetylsalicylic acid in inhibiting heat-induced protein denaturation, which activity is also depended upon the concentrations. The present study emphasises the potential application of curcumin as a natural antimicrobial and anti-inflammatory agent. However, findings of this study are restricted to in vitro assays and consideration should be given to conducting a study involving wider dose range test substances as well as including further research on in vivo models.

Author(s):  
RAJESH A ◽  
DOSS A ◽  
TRESINA PS ◽  
MOHAN VR

Objective: The objective of this study was to determine the anti-inflammatory activity of methanol extract of Niebuhria apetala and its possible mechanism of action. Methods: Methanol extract of Niebuhria apetala leaf (NAL) was assessed for its anti-inflammatory activity by in vitro methods. Using albumin denaturation assay, proteinase inhibitory activity, membrane stabilization, and antilipoxygenase activity at different concentrations, in vitro anti-inflammatory activity was estimated. The standard drug used for this purpose was aspirin. Results: Methanol extract NAL at a concentration range of 100–500 μg/ml significant (p<0.01) protects the heat-induced protein denaturation. At the concentration of 500 mg/ml, NAL showed significant (p<0.01) inhibition of protease inhibitory action. Heat-induced hemolysis of erythrocyte, hypotonicity-induced hemolysis, and lipooxygenase activity were significant (p<0.01) inhibited at the concentration of 500 μg/ml. Conclusion: Finally, the present study indicates that methanol extract of Niebuhria apetala can be a potential source of anti-inflammatory agent.


2018 ◽  
Vol 5 (10) ◽  
pp. 417-426 ◽  
Author(s):  
Samanjit Kaur ◽  
M. Syed Ali ◽  
V. Anuradha ◽  
V. Suganya ◽  
A. Ashashalini ◽  
...  

In the present study, analysis of in vitro inflammatory showed whole plant of Rhizophora mucronata Lam. (Malpighiales: Rhizophoraceae) can be the potent source. The data from this study showed that the R. mucronata leaf, bark and root extract could serve as an important anti-inflammatory agent. Moreover, among the three extracts, the stilt root and leaves extract showed highest anti inflammatory. In vitro anti-inflammatory activity of the selected plant extracts was evaluated using albumin denaturation, membrane stabilization and proteinase inhibitory assays. As part of the investigation on the mechanism of the anti-inflammation activity, ability of extract protein denaturation was studied. Maximum inhibition (296.26%) was observed from root extract followed by bark (259.48%) and leaf (237.62%). The extracts inhibited the heat induced hemolysis of RBCs to varying degree as show in table below. The maximum inhibition 284.17% was observed from bark extract followed by root (265.05%) and leaf (232.61%). It reveals that these phytochemical constituents are responsible to maximum protection of protein denaturation, albumin denaturation and membrane stabilization assay. The future work will be determination of anti-inflammatory and anti-arthritic activities by in vivo models.


Author(s):  
Bouhassane Nadia ◽  
Nouria Merad-Boussalah ◽  
Fatima Benyoucef ◽  
Arrar Zoheir ◽  
Alain Muselli ◽  
...  

Background:: Daucus gracilis Steinh belongs to the Apiaceae family. The flowers of this plant have been used by population of western Algeria for the treatment of mouth ulcers. However, very few studies exist of literature concerning the biological properties of Daucus gracilis Steinh flowers essential oil. Objectives:: The purpose of this work was to study the chemical composition of Daucus gracilis flowers essential oil and to evaluate their antimicrobial, insecticidal and anti-inflammatory properties. Methods:: The distilled essential oil was analyzed by GC and GC-MS. The antimicrobial activity of the essential oil was evaluated using two methods i) diffusion method, and ii) Micro dilution technique. The insecticidal activity of essential oil was evaluated against adults of Tribolium confusum by fumigant test. The in vitro assessment of anti-inflammatory property of essential oil was assessed by the protein denaturation method. Results:: Daucus gracilis flowers essential oil was mainly represented by Oxygenated monoterpenes such as Geranyl acetate (18.3%), Lavandulyl acetate (15.2%), Lavandulyl isobutyrate (13.6%) and Citronellyl isobutyrate (6.8%). According to the results of antimicrobial activity the essential oil of flowers presented prominent inhibitory action against Aspergillus flavus (0.06 μg/mL), followed by Staphylococcus aureus, Escherichia faecalis, Bacillus cereus and Candida albicans with MIC values of 0.125 μg/mL. The Daucus gracilis essential oil flowers proved to be very biocidal toward adults of Tribolium confusum, mortality of 100% of the population is noted with a dose of 2 μl/L air after 24 hours of exposure. Furthermore, the oil has shown has a very good inhibition of protein denaturation comparable to Diclofenac at concentration of 30 μL/mL. Conclusion:: Daucus gracilis essential oil can be used as pharmacological tools for inflammatory, antimicrobial and insecticidal properties.


Author(s):  
Muhammad Furqan Akhtar ◽  
Syed Ahmad Raza ◽  
Ammara Saleem ◽  
Irfan Hamid ◽  
Mirza Muhammad Faran Ashraf Baig ◽  
...  

Background: Peganum harmala is traditionally used to manage rheumatoid arthritis (RA) and other inflammatory conditions. However, its use against RA has not been scientifically evaluated. The current study was designed to assess the anti-arthritic and anti-inflammatory activities of the methanolic extract of P. harmala leaves by in vitro and in vivo methods. Methods: The in vitro assays were carried out to determine the effect of plant extract on inhibition of egg albumin denaturation and human red blood cell membrane (HRBC) stabilization. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity was performed to determine the antioxidant potential. In vivo anti-arthritic activity was performed by determining the curative effect against Complete Freund’s adjuvant (0.1 ml). The plant extract was administered to rats orally at 200, 400 and 600 mg/kg/day for 21 days. Results: The values of IC50 of plant extract in protein denaturation, stabilization of HRBC and DPPH assays were 77.54 mg/ml, 23.90 mg/ml and 58.09 µg/ml respectively. Moreover, the plant extract significantly attenuated the poly-arthritis and weight loss, anemia and paw edema. The plant extract restored the level of C-reactive protein, rheumatoid factor, alanine transaminase, aspartate transaminase and alkaline phosphatase in poly-arthritic rats. Moreover, the plant extract restored the immune organs weight in treated rats. Treatment with P. harmala also significantly subdued the oxidative stress by reinstating superoxide dismutase, reduced glutathione, catalase and malondialdehyde in poly-arthritic rats. The plant extract notably restored the prostaglandin-E2 and tumor necrosis factor (TNF)-α in the serum of poly-arthritic rats. Conclusion: It was concluded that P. harmala extract had potential antioxidant, anti-inflammatory and antiarthritic activities which primarily might be attributed to alkaloids, flavonoids and phenols.


2020 ◽  
Vol 9 (5) ◽  
pp. 356-360
Author(s):  
Kamala Lakshmi B ◽  
◽  
S Valarmathi ◽  

Albizia lebbeck (L.) Benth is an important traditional tree found throughout India. All part of this tree is considered as folk medicine and used for treatment of various disease. Current research work was carried out to identify the bioactive compound by phytochemical screening and to evaluate anti-inflammatory potential of aqueous leaf extract of A. lebbeck. The phytochemical screening of the leaf of A. lebbeck shows the presence of alkaloid, flavonoid, tannin, phenol, saponin, glycoside and free amino acid. The maximum inhibition of protein denaturation was found to be 78.06±0.5% at 500 µg/mL concentration and its IC₅₀ was 330 µg/mL concentration. The maximum inhibition in membrane stabilization was found to be 74.09±0.33% at 500 µg/mL concentration and its IC₅₀ was 440 µg/mL concentration. The maximum protection in hypotonicity induced haemolysis shows about 69.34±0.38% at 500 µg/mL concentration and its IC₅₀ was 400 µg/mL concentration. In vitro assay shows the moderate activity of anti-inflammatory in aqueous extract of A. lebbeck, when compared with the standard.


2020 ◽  
Vol 16 (8) ◽  
pp. 1227-1244
Author(s):  
Dharmendra Kumar ◽  
Pramod K. Sharma

Background:: Opuntia species, locally known as prickly pear was used for various purposes as food, medicine, beverage, source of dye and animal food. Many studies have revealed its pharmacology activity from time to time. This review is a collection of chemistry, pharmacognosy, pharmacology and bioapplications of the cactus family. Methods: Many sources were used to collect information about Opuntia species such as Pub med, Google scholar, Agris, science direct, Embase, Merk index, Wiley online library, books and other reliable sources. This review contains studies from 1812 to 2019. Results: The plants from the cactus family offer various pharmacological active compounds including phenolic compounds, carotenoids, betalains, vitamins, steroids, sugar, amino acids, minerals and fibers. These bioactive compounds serve various pharmacological activities such as anticancer, antiviral, anti-diabetic, Neuroprotective, anti-inflammatory, antioxidant, Hepatoprotective, antibacterial, antiulcer and alcohol hangover. According to various studies, Opuntia species offer many bioapplications such as fodder for animal, soil erosion, prevention, human consumption and waste water decontamination. Finally, different parts of plants are used in various formulations that offer many biotechnology applications. Conclusion: Different parts of Opuntia plant (fruits, seeds, flowers and cladodes) are used in various health problems which include wound healing, anti-inflammatory and urinary tract infection from ancient times. Nowadays, researches have extended several pharmacological and therapeutic uses of Opuntia species as discussed in this review. Many in-vitro and in-vivo models are also discussed in this review as the proofs of research findings. Various research gaps have been observed in current studies that require attention in the future.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A12-A12
Author(s):  
Jun Zhou ◽  
Shuang Zhu ◽  
Hongjuan Zhang ◽  
Lei Zheng ◽  
Mingfa Zang ◽  
...  

BackgroundBispecific T cell engagers (BiTE) is a fast-growing class of immunotherapies. They are bispecific antibody that bind to T cell-surface protein (for example, CD3e) and a specific tumor associate antigen (TAA) on tumor cells, by which to redirect T cells against tumor cells in a MHC-independent manner. A successful example in the clinical is Blinatumomab, a BiTE antibody against CD3/CD19 approved in 2014 to treat acute lymphoblastic leukemia. Currently, many CD3-based BiTE are in clinical trials, including BCMAxCD3, Her2xCD3, CEAxCD3, and PSMAxCD3. To evaluate the efficacy of BiTE in vitro, human peripheral blood monocyte cells (hPBMC) are commonly being used as a source of T cells to co-culture with tumor cells. The disadvantage of using hPBMC is donor-to-donor variability and the availability of the original donor if a study needs to be repeated.MethodsTo overcome this, we proposed to replace hPBMC with T cells from human CD3e (hCD3) genetically engineered mouse models mice (GEMM) for in in vitro coculture assay. T cells were isolated from hCD3 GEMM mice using negative selection mouse T cell isolation kit. Conventional tumor cell lines or luciferase-engineered patient-derived-xenograft (PDX)-derived organoids (PDXO) expressing specific antigens are co-cultured with hCD3 T cells in 96-well plates in the presence of BiTE antibody.ResultsWe measured the killing of tumor cells using either flow cytometry or luciferase activity as readouts. To analyze tumor-reactivity of T cells to cancer cell line or organoids, IFN-gamma in the culture medium was measured and activation markers on T cells was assessed.ConclusionsOur data showed the feasibility of using humanized mice T cells as a replacement for hPBMCs to assess BiTE antibody in vitro. We are further validating the application of murine hCD3 T cells for in vivo models to test bispecific T cell engagers.


2013 ◽  
Vol 63 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Mohammed Afzal Azam ◽  
Loganathan Dharanya ◽  
Charu Chandrakant Mehta ◽  
Sumit Sachdeva

In the present study, a series of benzothiazol derivatives 3a-l containing pyrazolo[3,4-d]pyrimidine moiety at the second position were synthesized and characterized by analytical and spectral data. The compounds were tested for their in vitro antimicrobial activity. Compounds 1-(1,3-benzothiazol-2- yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3a), 1- (1,3-benzothiazol-2-yl)-4-(4-chlorophenyl)-3-methyl-1H-pyrazolo[ 3,4-d]pyrimidine (3d) and 1-(1,3-benzothiazol-2-yl)- 3-methyl-4-substituted phenyl-1H-pyrazolo[3,4-d]pyrimidines (3h-j) showed significant inhibitory activity against P. aeruginosa whereas compounds 1-(1,3-benzothiazol-2-yl)-4- (2-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3b), 2-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin- 4-yl]phenol (3e), 1-(1,3-benzothiazol-2-yl)-4-(3,4-dimethoxyphenyl)- 3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3h), 4-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyri midin-4-yl]-N,N-dimethylaniline (3j) and 1-(1,3-benzothiazol- 2-yl)-3-methyl-4-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine (3k) were found to be active against C. albicans. Some of these synthesized compounds were evaluated for their in vivo acute toxicity, analgesic, anti-inflammatory, and ulcerogenic actions. The tested compound 4-[1-(1,3-benzothiazol- 2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-N, N-dimethylaniline (3j) exhibited maximum analgesic and anti-inflammatory activities. Compounds 1-(1,3-benzothiazol- -2-yl)-3-methyl-4-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine (3i) and 3j showed a significant gastrointestinal protection compared to the standard drug diclofenac sodium.


Sign in / Sign up

Export Citation Format

Share Document