Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages

2018 ◽  
Vol 127 ◽  
pp. 145-154 ◽  
Author(s):  
Agustín Luna-Bulbarela ◽  
Raunel Tinoco-Valencia ◽  
Gerardo Corzo ◽  
Kohei Kazuma ◽  
Katsuhiro Konno ◽  
...  
2018 ◽  
Vol 66 (17) ◽  
pp. 4422-4430 ◽  
Author(s):  
Jing Sun ◽  
Shiquan Qian ◽  
Jing Lu ◽  
Yanan Liu ◽  
Fengxia Lu ◽  
...  

2017 ◽  
Vol 83 (19) ◽  
Author(s):  
Qin Gu ◽  
Yang Yang ◽  
Qiming Yuan ◽  
Guangming Shi ◽  
Liming Wu ◽  
...  

ABSTRACT Fusarium graminearum (teleomorph: Ascomycota, Hypocreales, Gibberella, Gibberella zeae) is a destructive fungal pathogen that threatens the production and quality of wheat and barley worldwide. Controlling this toxin-producing pathogen is a significant challenge. In the present study, the commercially available strain Bacillus amyloliquefaciens (Bacteria, Firmicutes, Bacillales, Bacillus) FZB42 showed strong activity against F. graminearum. The lipopeptide bacillomycin D, produced by FZB42, was shown to contribute to the antifungal activity. Purified bacillomycin D showed strong activity against F. graminearum, and its 50% effective concentration was determined to be approximately 30 μg/ml. Analyses using scanning and transmission electron microscopy revealed that bacillomycin D caused morphological changes in the plasma membranes and cell walls of F. graminearum hyphae and conidia. Fluorescence microscopy combined with different dyes showed that bacillomycin D induced the accumulation of reactive oxygen species and caused cell death in F. graminearum hyphae and conidia. F. graminearum secondary metabolism also responded to bacillomycin D challenge, by increasing the production of deoxynivalenol. Biological control experiments demonstrated that bacillomycin D exerted good control of F. graminearum on corn silks, wheat seedlings, and wheat heads. In response to bacillomycin D, F. graminearum genes involved in scavenging reactive oxygen species were downregulated, whereas genes involved in the synthesis of deoxynivalenol were upregulated. Phosphorylation of MGV1 and HOG1, the mitogen-activated protein kinases of F. graminearum, was increased in response to bacillomycin D. Taken together, these findings reveal the mechanism of the antifungal action of bacillomycin D. IMPORTANCE Biological control of plant disease caused by Fusarium graminearum is desirable. Bacillus amyloliquefaciens FZB42 is a representative of the biocontrol bacterial strains. In this work, the lipopeptide bacillomycin D, produced by FZB42, showed strong fungicidal activity against F. graminearum. Bacillomycin D caused morphological changes in the plasma membrane and cell wall of F. graminearum, induced accumulation of reactive oxygen species, and ultimately caused cell death in F. graminearum. Interestingly, when F. graminearum was challenged with bacillomycin D, the deoxynivalenol production, gene expression, mitogen-activated protein kinase phosphorylation, and pathogenicity of F. graminearum were significantly altered. These findings clarified the mechanisms of the activity of bacillomycin D against F. graminearum and highlighted the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against F. graminearum.


2012 ◽  
Vol 79 (3) ◽  
pp. 808-815 ◽  
Author(s):  
Zhihui Xu ◽  
Jiahui Shao ◽  
Bing Li ◽  
Xin Yan ◽  
Qirong Shen ◽  
...  

ABSTRACTBacillus amyloliquefaciensstrains are capable of suppressing soilborne pathogens through the secretion of an array of lipopeptides and root colonization, and biofilm formation ability is considered a prerequisite for efficient root colonization. In this study, we report that one of the lipopeptide compounds (bacillomycin D) produced by the rhizosphere strainBacillus amyloliquefaciensSQR9 not only plays a vital role in the antagonistic activity againstFusarium oxysporumbut also affects the expression of the genes involved in biofilm formation. When the bacillomycin D and fengycin synthesis pathways were individually disrupted, mutant SQR9M1, which was deficient in the production of bacillomycin D, only showed minor antagonistic activity againstF. oxysporum, but another mutant, SQR9M2, which was deficient in production of fengycin, showed antagonistic activity equivalent to that of the wild-type strain ofB. amyloliquefaciensSQR9. The results fromin vitro, rootin situ, and quantitative reverse transcription-PCR studies demonstrated that bacillomycin D contributes to the establishment of biofilms. Interestingly, the addition of bacillomycin D could significantly increase the expression levels ofkinCgene, but KinC activation is not triggered by leaking of potassium. These findings suggest that bacillomycin D contributes not only to biocontrol activity but also to biofilm formation in strainB. amyloliquefaciensSQR9.


2020 ◽  
Author(s):  
chunshan quan ◽  
liming jin ◽  
wei zhou ◽  
jialu liu ◽  
xian shi ◽  
...  

Abstract Background: Bacillus amyloliquefaciens Q-426 can secrete numerous cyclic lipopeptides that have antifungal and antitumor activities. ComQXPA is a common quorum sensing (QS) system in Bacillus species. Most B. amyloliquefaciens strains are encoding the QS gene cluster comQXPA, however, the biological function of the ComQXPA system in B. amyloliquefaciens has not been well studied. In this study, we identified the comQXPA gene locus and the chemical structure of ComXQ-426 in B. amyloliquefaciens Q-426, and explored the function of ComXQ-426 in regulating lipopeptide production.Results: We identified and analyzed the comQXPA locus in Q-426. The full length of the comQXPA gene cluster was 4,014 bp, including 912 bp of comQ, 165 bp of comX, 2292 bp of comP, and 645 bp of comA. The comQXPA locus belongs to group B, as comQ and comX overlap by only one base pair. ComXQ-426 consists of six amino acids (GGDWKY) that contain a modified tryptophan residue. The antifungal activity of Q426ΔcomX was significantly affected, and almost no antifungal activity was observed, while the antifungal activity of strain Q426ΔcomX /comQX was restored to the same level as that of the wild-type strain. When the ComXQ-426 was added to the culture medium at a final concentration of 8 μg/L at the early stage of the log-phase, the antifungal activity of the wild-type strain Q-426 was significantly improved. Knocking out the comX gene did not affect the growth of the bacteria, however, the strain Q426ΔcomX lost its swimming ability, was unable to form colonies when spread on a solid surface, and could not form biofilms on the interface between the gas and liquid medium.Conclusions: Disruption of the ComPA signaling pathway in the Q-426 strain resulted in significant effects on bacillomycin D production, morphology, and motility.


Sign in / Sign up

Export Citation Format

Share Document