Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors

2021 ◽  
Vol 144 ◽  
pp. 105909
Author(s):  
Mutawara Mahmood Baig ◽  
Iftikhar Hussain Gul
2016 ◽  
Vol 192 ◽  
pp. 110-119 ◽  
Author(s):  
Ellie Yi Lih Teo ◽  
Lingeswarran Muniandy ◽  
Eng-Poh Ng ◽  
Farook Adam ◽  
Abdul Rahman Mohamed ◽  
...  

Author(s):  
ATHIRA A R ◽  
B N Bessy Raj ◽  
xavier t s

Abstract Metal-organic frameworks (MOF) are well-known for their high surface area and porous nature. However, their use in energy storage applications remains limited by their poor electrical conductivity. Here, microwave-induced polyindole modified cobalt MOF composite (CoMP) was constructed to address the poor conductivity of cobalt MOF and improve their applicability in energy storage. The electrochemical performance of the CoMP was investigated in 3 M KOH electrolyte. Deliberate mixing of PIn with Cobalt MOF resulted in effective diffusion of PIn nanospheres into the MOF matrix. With the reticulate porous morphology and large surface area, the CoMP electrode could facilitate easy ion transport at the electrode-electrolyte interface and achieve a maximum specific capacitance as high as 432.6 mF cm-2 at 10 mV s-1 surpassing polyindole (284.5 mF cm-2) and cobalt MOF (235.5 mF cm-2). Also, the CoMP symmetric supercapacitor delivered high specific energy (8.2 W h cm-2) and specific power (622 W cm-2) at 2 mA cm-2 with 93% capacitance retention after 5000 GCD cycles.


2016 ◽  
Vol 4 (47) ◽  
pp. 18294-18299 ◽  
Author(s):  
Kishor Gupta ◽  
Tianyuan Liu ◽  
Reza Kavian ◽  
Han Gi Chae ◽  
Gyeong Hee Ryu ◽  
...  

High surface area carbon with a surface area of 3550 m2g−1is synthesizedviaa low-cost, scalable process from polyacrylonitrile.


2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


ChemInform ◽  
2010 ◽  
Vol 33 (48) ◽  
pp. no-no
Author(s):  
Manfred Schwickardi ◽  
Thorsten Johann ◽  
Wolfgang Schmidt ◽  
Ferdi Schueth

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


Sign in / Sign up

Export Citation Format

Share Document