scholarly journals Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.

2018 ◽  
Vol 10 (3) ◽  
pp. 149
Author(s):  
Mahmud Sudibandriyo ◽  
L Lydia

Surface area characterization of activated carbon from sugarcane baggase by chemical activationAdsorption is one the process with many applications in the industries such as in a separation or in gas storage. In this adsorption, adsorbent selection is the most important thing. One of the adsorbent most suitable for this process is activated carbon. Previous studies show that high surface area of activated carbon can be produced from sugarcane bagasse using activator ZnCl2. The research’s goal is to produce activated carbon from sugarcane bagasse and determine the effects of activator on the surface area of activated carbon produced. Activators used in this research are KOH and ZnCl2 with the mass ratio of activator/carbon are 1/1, 2/1 and 3/1. The results show that The highest surface area, 938,2 m2/g, is obtained by activation using KOH with mass ratio of activator/carbon 3/1, whereas the highest surface area by activation using ZnCl2 is 632 m2/g with mass ratio of activator/carbon 2/1. For comparison, preparation of activated carbon by physical activation is also done and the surface area is 293 m2/g.Keywords: Activated carbon, chemical activation, sugarcane bagasse, KOH, ZnCl2 Abstrak Adsorpsi merupakan salah satu proses yang banyak digunakan dalam industri baik dalam pemisahan maupun untuk penyimpanan gas. Pada proses adsorpsi ini, pemilihan adsorben merupakan hal yang sangat penting. Salah satu jenis adsorben yang sangat cocok untuk proses ini adalah karbon aktif. Penelusuran studi sebelumnya menunjukkan bahwa karbon aktif dengan luas permukaan yang cukup tinggi dapat dibuat dari ampas tebu dengan menggunakan aktivator ZnCl2. Penelitian ini bertujuan untuk menghasilkan karbon aktif dari ampas tebu dengan aktivasi kimia serta mengetahui pengaruh aktivator terhadap luas permukaan karbon aktif yang dihasilkan. Aktivator yang digunakan dalam penelitian ini adalah KOH dan ZnCl2 dengan rasio massa aktivator/massa karbon 1/1, 2/1, dan 3/1. Aktivasi dilakukan pada temperatur 700 oC selama 1 jam. Hasil penelitian menunjukkan bahwa luas permukaan tertinggi sebesar 938,2 m2/g diperoleh dengan aktivasi menggunakan KOH dengan rasio massa aktivator/massa arang 3/1, sedangkan aktivasi dengan menggunakan ZnCl2 diperoleh luas permukaan tertinggi sebesar 632 m2/g dengan rasio massa aktivator/massa arang 2/1. Sebagai pembanding, pada penelitian ini juga dilakukan pembuatan karbon aktif dengan metode aktivasi fisika dan diperoleh luas permukaan karbon aktif sebesar 293 m2/g.Kata kunci: Aktivasi kimia, ampas tebu, karbon aktif, KOH, ZnCl2


2017 ◽  
Vol 751 ◽  
pp. 671-676 ◽  
Author(s):  
Tawan Chaiwon ◽  
Panatda Jannoey ◽  
Duangdao Channei

This research aimed to study the preparation of activated carbon from sugarcane bagasse waste. The sugarcane bagasse adsorbent was prepared by calcination at 600°C for 2 hours with the use of sulfuric acid (H2SO4) as a chemical activation. The adsorption surface possessed high specific surface area (838 m2/g) with mesoporous diameter. Factors explaining adsorption including adsorption isotherm, adsorption kinetic and adsorption mechanism were constructed from methylene blue adsorption experiments. It was found that the equilibrium data was best represented by Freundlich isotherm, showing multilayer coverage of dye molecules at the outer surface of adsorbent with a cooperative adsorption (physisorption and chemisorption). The kinetic of methylene blue adsorption was found to follow pseudo-second-order rate kinetic model, with a good correlation coefficient. This indicated that the overall rate of the dye adsorption process was controlled by the chemisorption process.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 62-79 ◽  
Author(s):  
Zhong-Pan Hu ◽  
Ze-Min Gao ◽  
Xinying Liu ◽  
Zhong-Yong Yuan

Red mud was activated by a digestion–precipitation method, resulting in a mesostructure with high surface area, and the activated red mud was further used as the adsorbent for methylene blue removal. The physicochemical properties of the resultant samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry analysis, and nitrogen sorption techniques. Batch studies were measured to investigate the influence factors including adsorbent dosage, contact time, pH, and initial concentration. It was revealed that the activated red mud was highly efficient for removal of methylene blue. Adsorption experiments were found to be better achieved in faintly acidic and alkaline conditions, where the adsorption capacity of activated red mud and activated red mud-200 reached 232 and 274 mg/g at pH 7.0, respectively. Langmuir, Freundlich, Temkin isotherms, and pseudo-second-order kinetic model fitted the experimental data well, demonstrating an electrostatic interaction mechanism.


2019 ◽  
Vol 35 (4) ◽  
pp. 1407-1413
Author(s):  
Pasinee Panith ◽  
Worawat Wattanathana ◽  
Wanchai Deeloed ◽  
Ratthapit Wuttisarn ◽  
Suttipong Wannapaiboon ◽  
...  

Magnesium silicate hydrate was synthesized for using as an adsorbent for different commercial organic dyes. X-ray diffraction (XRD) confirmed the crystalline phase of magnesium silicate hydrate. Some characteristic absorption bands of the magnesium silicate hydrate structure were observed in the Fourier transform infrared spectroscopy (FTIR) spectrum which supported the result identified from XRD data. Analysis of surface area and porosity by surface area analyzer showed that the synthesized magnesium silicate had high surface area of 634.63 m2/g and also showed the average BJH pore size of 3.72 nm. Insight into the sorption isotherm curve, the hysteresis characteristic was clearly observed suggesting a presence of mesopores within the obtained material. Dye adsorption study revealed that the synthesized adsorbent had the strongest affinity to the cationic dye (methylene blue) on account of the negative charge on the surface of the adsorbent. Hence, the adsorption of methylene blue was reached the equilibrium at the fastest time. In all, the results showed a possibility to apply this prepared magnesium silicate materials as a selective adsorbent for cationic dyes.


Sign in / Sign up

Export Citation Format

Share Document