A new mathematical equation relating activation energy to bond angle and distance: A key for understanding the role of acceleration in lactonization of the trimethyl lock system

2009 ◽  
Vol 37 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Rafik Karaman
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


2016 ◽  
Vol 6 (11) ◽  
pp. 3984-3996 ◽  
Author(s):  
Jithin John Varghese ◽  
Quang Thang Trinh ◽  
Samir H. Mushrif

Of the three mechanisms for activation of methane on copper and copper oxide surfaces, the under-coordinated Cu–O site pair mediated mechanism on CuO surfaces has the lowest activation energy barriers.


2001 ◽  
Vol 75 (11) ◽  
pp. 4984-4989 ◽  
Author(s):  
Simon K. Tsang ◽  
Brian M. McDermott ◽  
Vincent R. Racaniello ◽  
James M. Hogle

ABSTRACT We examined the role of soluble poliovirus receptor on the transition of native poliovirus (160S or N particle) to an infectious intermediate (135S or A particle). The viral receptor behaves as a classic transition state theory catalyst, facilitating the N-to-A conversion by lowering the activation energy for the process by 50 kcal/mol. In contrast to earlier studies which demonstrated that capsid-binding drugs inhibit thermally mediated N-to-A conversion through entropic stabilization alone, capsid-binding drugs are shown to inhibit receptor-mediated N-to-A conversion through a combination of enthalpic and entropic effects.


2021 ◽  
Author(s):  
Yu Gao ◽  
Jun Huang ◽  
Yuwen Liu ◽  
Shengli Chen

The discrepancy between the trend in the diffusion coefficient of lithium ion (DLi+) and that in the activation energy of ion hopping signals hidden factors determining ion transport kinetics in...


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2428-2441
Author(s):  
Xusheng Li ◽  
Jinlong Wang ◽  
Derong Yan ◽  
Yongjun Yin ◽  
Shuangfei Wang

To understand the effects and the mechanism of sodium carbonate (Na2CO3) addition on the bagasse alkaline black liquor (BABL) pyrolysis, the reaction variables such as temperature, heating rate, and amount of Na2CO3 addition into BABL-solids were investigated under N2 atmosphere from 50 °C to 1000 °C by thermogravimetic analysis (TGA). Scanning electron microscopy (SEM) and the Coats–Redfern method (CRM) were employed for surface microscopic morphology observations and kinetic analysis, respectively. The results showed that Na2CO3 plays an inhibiting and promoting role during devolatilization (200 °C to 650 °C) and the reduction stages (650 °C to 1000 °C), respectively. Adding Na2CO3 into BABL-solids tends to increase the thickness of the salt layer covering the BABL-solids surface, which increases the activation energy and reduces the weight loss ratio of BABL-solids pyrolysis within 200 °C to 650 °C. Adding Na2CO3 into the BABL-solids tends to increase the number of alkaline compounds or the active site of the reduction reaction, which reduces the activation energy and increases the weight loss ratio of BABL-solids pyrolysis within 650 °C to 1000 °C. The role of Na2CO3 as an additive could be well understood by studying the influence mechanism of Na2CO3 on BABL-solids pyrolysis.


Langmuir ◽  
2018 ◽  
Vol 34 (5) ◽  
pp. 2147-2157 ◽  
Author(s):  
Maria Lopez ◽  
Jacqueline Denver ◽  
Sue Ellen Evangelista ◽  
Alessandra Armetta ◽  
Gabriella Di Domizio ◽  
...  

Author(s):  
A. Al-Zubaidi ◽  
Mubbashar Nazeer ◽  
S. Saleem ◽  
Farooq Hussain ◽  
Fayyaz Ahmad

This paper numerically simulates the nanofluid flow over a thermally expanding Riga plate. Buongiorno model for nanofluid is employed to investigate the contribution of Brownian motion and thermophoretic force on the nanoflow. Magnetohydrodynamics (MHD) of viscous nanofluid through a porous medium is characterized with the help of Darcy–Forchheimer’s model. In addition, the simultaneous effects of activation energy and chemical reaction have been incorporated. Moreover, highly nonlinear coupled differential equations are formulated which highlight the influence of viscous dissipation and heat generation. A numerical solution is achieved with the help of the Range–Kutta fourth-order (RK4) method combined with the shooting technique. Finally, the role of emerging parameters is studied via performing the numerical simulation which reveals that the momentum boundary layer of nanofluid shrinks due to the porous medium. Whereas, thermal boundary layer expands for all variables, except for the Prandtl number. Finally, mass transfer rated suffers due to Schmidt number.


Synlett ◽  
2020 ◽  
Vol 31 (13) ◽  
pp. 1259-1267
Author(s):  
Tadashi Mori

Entropy as well as enthalpy factors play substantial roles in various chemical phenomena such as equilibrium and reactions. However, the entropy factors are frequently underestimated in most instances, particularly in synthetic chemistry. In reality, the entropy factor can be in competition with the enthalpy factor or can even be decisive in determining the overall free or activation energy change upon molecular interaction and chemical transformation, particularly where weak interactions in ground and/or excited states are significant. In this account, we overview the importance of the entropy factor in various chemical phenomena in both thermodynamics and kinetics and in the ground and excited states. It is immediately apparent that many diastereo- and enantioselective photoreactions are entropy-controlled. Recent advances on the entropy-control concept in asymmetric photoreactions are further discussed. Understanding the entropy-control concept will pave the way to improve, fine-tune, and even invert the chemo- and stereoselectivity of relevant chemical phenomena.1 Introduction2 Role of Entropy in Supramolecular Interactions3 Selected Examples of Entropy-Driven Thermal Reactions4 Classical Examples of Entropy Control in Photoreactions5 Entropy-Driven Asymmetric Photoreactions6 Advances in Entropy Control7 Perspective


Sign in / Sign up

Export Citation Format

Share Document