Impact of carboplatin plus paclitaxel combined with endostar against A375 melanoma cells: An in vitro and in vivo analysis

2016 ◽  
Vol 83 ◽  
pp. 1321-1326 ◽  
Author(s):  
Ai-Wen Zheng ◽  
Dong-Dong Jia ◽  
Li-Ming Xia ◽  
Gu Jin ◽  
Hao Wu ◽  
...  
2009 ◽  
Vol 206 (1) ◽  
pp. 221-232 ◽  
Author(s):  
Ramin Massoumi ◽  
Silke Kuphal ◽  
Claus Hellerbrand ◽  
Bodo Haas ◽  
Peter Wild ◽  
...  

High malignancy and early metastasis are hallmarks of melanoma. Here, we report that the transcription factor Snail1 inhibits expression of the tumor suppressor CYLD in melanoma. As a direct consequence of CYLD repression, the protooncogene BCL-3 translocates into the nucleus and activates Cyclin D1 and N-cadherin promoters, resulting in proliferation and invasion of melanoma cells. Rescue of CYLD expression in melanoma cells reduced proliferation and invasion in vitro and tumor growth and metastasis in vivo. Analysis of a tissue microarray with primary melanomas from patients revealed an inverse correlation of Snail1 induction and loss of CYLD expression. Importantly, tumor thickness and progression-free and overall survival inversely correlated with CYLD expression. Our data suggest that Snail1-mediated suppression of CYLD plays a key role in melanoma malignancy.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
T Kozlova ◽  
G V Pokholkova ◽  
G Tzertzinis ◽  
J D Sutherland ◽  
I F Zhimulev ◽  
...  

Abstract DHR38 is a member of the steroid receptor superfamily in Drosophila homologous to the vertebrate NGFI-B-type orphan receptors. In addition to binding to specific response elements as a monomer, DHR38 interacts with the USP component of the ecdysone receptor complex in vitro, in yeast and in a cell line, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly. We characterized the molecular structure and expression of the Dhr38 gene and initiated an in vivo analysis of its function(s) in development. The Dhr38 transcription unit spans more than 40 kb in length, includes four introns, and produces at least four mRNA isoforms differentially expressed in development; two of these are greatly enriched in the pupal stage and encode nested polypeptides. We characterized four alleles of Dhr38: a P-element enchancer trap line, l(2)02306, which shows exclusively epidermal staining in the late larval, pre-pupal and pupal stages, and three EMS-induced alleles. Dhr38 alleles cause localized fragility and rupturing of the adult cuticle, demonstrating that Dhr38 plays an important role in late stages of epidermal metamorphosis.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1066
Author(s):  
Ali Zari ◽  
Hajer Alfarteesh ◽  
Carly Buckner ◽  
Robert Lafrenie

Uncaria tomentosa is a medicinal plant native to Peru that has been traditionally used in the treatment of various inflammatory disorders. In this study, the effectiveness of U. tomentosa as an anti-cancer agent was assessed using the growth and survival of B16-BL6 mouse melanoma cells. B16-BL6 cell cultures treated with both ethanol and phosphate-buffered saline (PBS) extracts of U. tomentosa displayed up to 80% lower levels of growth and increased apoptosis compared to vehicle controls. Treatment with ethanolic extracts of Uncaria tomentosa were much more effective than treatment with aqueous extracts. U. tomentosa was also shown to inhibit B16-BL6 cell growth in C57/bl mice in vivo. Mice injected with both the ethanolic and aqueous extracts of U. tomentosa showed a 59 ± 13% decrease in B16-BL6 tumour weight and a 40 ± 9% decrease in tumour size. Histochemical analysis of the B16-BL6 tumours showed a strong reduction in the Ki-67 cell proliferation marker in U. tomentosa-treated mice and a small, but insignificant increase in terminal transferase dUTP nick labelling (TUNEL) staining. Furthermore, U. tomentosa extracts reduced angiogenic markers and reduced the infiltration of T cells into the tumours. Collectively, the results in this study concluded that U. tomentosa has potent anti-cancer activity that significantly inhibited cancer cells in vitro and in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessia Varone ◽  
Chiara Amoruso ◽  
Marcello Monti ◽  
Manpreet Patheja ◽  
Adelaide Greco ◽  
...  

Abstract Background Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs.


2016 ◽  
Vol 87 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Roberta Lione ◽  
Francesca Gazzani ◽  
Chiara Pavoni ◽  
Stefano Guarino ◽  
Vincenzo Tagliaferri ◽  
...  

ABSTRACT Objective: To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). Materials and Methods: To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. Results: The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. Conclusions: Under ideal conditions, after 5 minutes (300 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.


1988 ◽  
Vol 91 (2) ◽  
pp. 281-286
Author(s):  
M.C. Copeman ◽  
H. Harris

It has been shown that when malignant tumour cells are fused with normal fibroblasts the suppression of malignancy in the hybrids is linked to their ability to produce a collagenous extracellular matrix in vivo. When, as a consequence of chromosome loss, segregants arise that reacquire malignancy, these do not produce any detectable matrix. In this paper we examine the main components of the extracellular matrix produced in vitro by hybrids between malignant mouse melanoma cells and normal mouse fibroblasts. Hybrids in which malignancy is suppressed synthesize about ten times as much type 1 procollagen as the malignant segregants derived from them; they also retain more fibronectin in the cell layer and release less protease activity into the medium. Malignant segregants more closely resemble the parental melanoma cells in producing fibronectin and mainly types IV and V procollagen. When hybrid cells in which malignancy is initially suppressed are grown continuously in vitro, the production of type I procollagen declines, and the production of type V procollagen and the release of protease activity into the medium increase. These changes, which are associated with the loss from the hybrid cells of both copies of the chromosome 4 derived from the parental fibroblast, predict the reacquisition of malignancy when the cells are inoculated into mice. It is possible that one gene or set of genes located on chromosome 4 determines both the execution of the fibroblast differentiation programme and the suppression of malignancy.


Sign in / Sign up

Export Citation Format

Share Document