Temporal dynamics of reward anticipation in the human brain

2017 ◽  
Vol 128 ◽  
pp. 89-97 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Qi Li ◽  
Zhao Wang ◽  
Xun Liu ◽  
Ya Zheng
2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2009 ◽  
Vol 19 ◽  
pp. S44-S44
Author(s):  
M.A. Mehta ◽  
V. Zois ◽  
C. Muller-Pollard ◽  
F.O. Zelaya ◽  
S.C. Williams ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaopeng Si ◽  
Shunli Han ◽  
Kuo Zhang ◽  
Ludan Zhang ◽  
Yulin Sun ◽  
...  

The electroencephalography (EEG) microstate has recently emerged as a new whole-brain mapping tool for studying the temporal dynamics of the human brain. Meanwhile, the neuromodulation effect of external stimulation on the human brain is of increasing interest to neuroscientists. Acupuncture, which originated in ancient China, is recognized as an external neuromodulation method with therapeutic effects. Effective acupuncture could elicit the deqi effect, which is a combination of multiple sensations. However, whether the EEG microstate could be used to reveal the neuromodulation effect of acupuncture with deqi remains largely unclear. In this study, multichannel EEG data were recorded from 16 healthy subjects during acupuncture manipulation, as well as during pre- and post-manipulation tactile controls and pre- and post-acupuncture rest controls. As the basic acupuncture unit for regulating the central nervous system, the Hegu acupoint was used in this study, and each subject’s acupuncture deqi behavior scores were collected. To reveal the neuroimaging evidence of acupuncture with deqi, EEG microstate analysis was conducted to obtain the microstate maps and microstate parameters for different conditions. Furthermore, Pearson’s correlation was analyzed to investigate the correlation relationship between microstate parameters and deqi behavioral scores. Results showed that: (1) compared with tactile controls, acupuncture manipulation caused significantly increased deqi behavioral scores. (2) Acupuncture manipulation significantly increased the duration, occurrence, and contribution parameters of microstate C, whereas it decreased those parameters of microstate D. (3) Microstate C’s duration parameter showed a significantly positive correlation with acupuncture deqi behavior scores. (4) Acupuncture manipulation significantly increased the transition probabilities with microstate C as node, whereas it reduced the transition probabilities with microstate D as node. (5) Microstate B→C’s transition probability also showed a significantly positive correlation with acupuncture deqi behavior scores. Taken together, the temporal dynamic feature of EEG microstate could be used as objective neuroimaging evidence to reveal the neuromodulation effect of acupuncture with deqi.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


Neuroscience ◽  
2010 ◽  
Vol 167 (3) ◽  
pp. 700-708 ◽  
Author(s):  
A.M. Lascano ◽  
T. Hummel ◽  
J.-S. Lacroix ◽  
B.N. Landis ◽  
C.M. Michel

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1547
Author(s):  
Karina Maciejewska ◽  
Wojciech Froelich

Research on the functioning of human cognition has been a crucial problem studied for years. Electroencephalography (EEG) classification methods may serve as a precious tool for understanding the temporal dynamics of human brain activity, and the purpose of such an approach is to increase the statistical power of the differences between conditions that are too weak to be detected using standard EEG methods. Following that line of research, in this paper, we focus on recognizing gender differences in the functioning of the human brain in the attention task. For that purpose, we gathered, analyzed, and finally classified event-related potentials (ERPs). We propose a hierarchical approach, in which the electrophysiological signal preprocessing is combined with the classification method, enriched with a segmentation step, which creates a full line of electrophysiological signal classification during an attention task. This approach allowed us to detect differences between men and women in the P3 waveform, an ERP component related to attention, which were not observed using standard ERP analysis. The results provide evidence for the high effectiveness of the proposed method, which outperformed a traditional statistical analysis approach. This is a step towards understanding neuronal differences between men’s and women’s brains during cognition, aiming to reduce the misdiagnosis and adverse side effects in underrepresented women groups in health and biomedical research.


2014 ◽  
Vol 10 (3) ◽  
pp. 253-267 ◽  
Author(s):  
Yiwen Wang ◽  
Liang Huang ◽  
Wei Zhang ◽  
Zhen Zhang ◽  
Stephanie Cacioppo

2018 ◽  
Author(s):  
Karim Rajaei ◽  
Yalda Mohsenzadeh ◽  
Reza Ebrahimpour ◽  
Seyed-Mahdi Khaligh-Razavi

AbstractCore object recognition, the ability to rapidly recognize objects despite variations in their appearance, is largely solved through the feedforward processing of visual information. Deep neural networks are shown to achieve human-level performance in these tasks, and explain the primate brain representation. On the other hand, object recognition under more challenging conditions (i.e. beyond the core recognition problem) is less characterized. One such example is object recognition under occlusion. It is unclear to what extent feedforward and recurrent processes contribute in object recognition under occlusion. Furthermore, we do not know whether the conventional deep neural networks, such as AlexNet, which were shown to be successful in solving core object recognition, can perform similarly well in problems that go beyond the core recognition. Here, we characterize neural dynamics of object recognition under occlusion, using magnetoencephalography (MEG), while participants were presented with images of objects with various levels of occlusion. We provide evidence from multivariate analysis of MEG data, behavioral data, and computational modelling, demonstrating an essential role for recurrent processes in object recognition under occlusion. Furthermore, the computational model with local recurrent connections, used here, suggests a mechanistic explanation of how the human brain might be solving this problem.Author SummaryIn recent years, deep-learning-based computer vision algorithms have been able to achieve human-level performance in several object recognition tasks. This has also contributed in our understanding of how our brain may be solving these recognition tasks. However, object recognition under more challenging conditions, such as occlusion, is less characterized. Temporal dynamics of object recognition under occlusion is largely unknown in the human brain. Furthermore, we do not know if the previously successful deep-learning algorithms can similarly achieve human-level performance in these more challenging object recognition tasks. By linking brain data with behavior, and computational modeling, we characterized temporal dynamics of object recognition under occlusion, and proposed a computational mechanism that explains both behavioral and the neural data in humans. This provides a plausible mechanistic explanation for how our brain might be solving object recognition under more challenging conditions.


2021 ◽  
pp. 25-35
Author(s):  
Marta Garazdiuk

For a forensic expert-practitioner, it is especially important to objectively diagnose and time since the formation of hemorrhage (TSFH) in the substance of the human brain (SHB) of traumatic and non-traumatic origin, as there are cases when the external examination of the corpse at the scene are absent, and at internal research find hemorrhages in a brain. In forensic practice, to verify the cause of death, physical-optical methods are successfully used, which are based on laser irradiation of biological tissues with subsequent mathematical and statistical processing of the obtained data. Previous studies on the possibility of differentiating the cause of death by traditional polarization methods have yielded positive results, which suggests the possibility of their suitability for verification of the genesis of hemorrhage into the brain. For a forensic expert-practitioner, the main thing is objectivity, accuracy and speed of obtaining the result, which could fully satisfy the methods of laser polarimetry in the case of determining the TSFH of traumatic and non-traumatic origin in SHB. Therefore, it is necessary to continue the development and research of these methods for this purpose. Aim of the work. To substantiate the possibility of using the method of differential Mueller-matrix mapping of phase anisotropy to determine the temporal dynamics of maps of linear birefringence of histological sections of human brain in determining the age of hemorrhage in human brain substance and to develop forensic criteria for determining the age. death due to cerebral infarction of ischemic and hemorrhagic origin. Materials and methods. To achieve this goal, we studied native histological preparations SHB from 130 corpses with a known time of death. The cause of death was TBI (group II (n=35)), cerebral infarction of ischemic origin (group III (n=32)), hemorrhagic stroke (group IV (n=33)), acute coronary insufficiency (group I – comparison group (n=30)). The values of the distribution of the coordinates of the polarization parameters at the points of the microscopic images at the location of the standard Stokes polarimeter were measured. Experimental measurements of Stokes-parametric images of biological layers were performed according to the method presented in the sources. Subsequently, the obtained data were subjected to statistical processing and evaluation of the obtained results. Statistical moments (SM) of the 1st-4th orders (mean (SM1), variance (SM2), asymmetry (SM3) and excess (SM4)) of each map were determined. Results and discussion. Comparative analysis of polarization Mueller-matrix mapping images of SHB sections from all groups revealed the destruction of the polycrystalline structure formed by optically active protein complexes of the brain substance, which indicates a decrease in absolute values and range of their scatter with increasing hemorrhage time. This is indicated by the coordinate inhomogeneity of the Mueller-matrix invariant maps of histological sections of SHB of all groups. For histograms that characterize the distributions of the Mueller-matrix invariant samples from all (comparison groups 1 and experimental 2-4) groups, are characterized by individual and significant variations in the values of statistical moments. Due to this, with increasing hemorrhage time, the value of the mean (SM1) and variance (SM2) decreases. Asymmetry (SM3) and excess (SM4), on the contrary, increase. The analysis of the results of statistical processing of the topographic structure of LD tomograms of fibrillar networks of histological sections of SHB dead from all groups shows a greater temporal dynamics of necrotic destruction of nervous tissue. Accordingly, there is a faster time decrease in the absolute values and the range of scatter of the LD value with increasing TSFH. That is, the diagnostic sensitivity of the statistical moments of the 3rd and 4th orders for azimuthal-invariant Mueller-matrix differentiation of nerve tissue samples of the brain of the deceased of control group 1 and all experimental groups 2-4 (p<0,05) was revealed. Conclusions. A series of studies of the effectiveness of a new in forensic practice method of differential Mueller-matrix mapping of partially depolarizing histological sections of SHB and tomographic reproduction of optical anisotropy parameters of their polycrystalline structure revealed a high level of accuracy of differentiation and formation of genesis, even under conditions of small geometric thickness of experimental samples. The range of linear change of values of statistical moments of the 1st - 4th orders which characterize distributions of size of LD of fibrillar networks of histologic sections of SHB of the dead from all groups, makes 24 h. In the range of 6-24 hours, the accuracy of determining the TSFH using statistical processing of the topographic structure of LD tomograms of fibrillar networks of histological sections of TSFH is (30±5) minutes.


Sign in / Sign up

Export Citation Format

Share Document