Methanol removal efficiency and bacterial diversity of an activated carbon biofilter

2009 ◽  
Vol 100 (24) ◽  
pp. 6207-6216 ◽  
Author(s):  
Callie W. Babbitt ◽  
Adriana Pacheco ◽  
Angela S. Lindner
2004 ◽  
Vol 30 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Michitaka FURUBAYASHI ◽  
Kenichi NAGAI

Author(s):  
Minja Bogunović ◽  
Tijana Marjanović ◽  
Ivana Ivančev-Tumbas

Emerging microcontaminants benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) are widely used anthropogenic markers from a group of pharmaceuticals and personal care products. They have different logD values and charges at neutral pH (2.96 neutral for BP; 3.65 negative and neutral for BP-3; 0.28 and neutral for CF). The goal of this study was to assess the efficacy of coagulation/flocculation/sedimentation (C/F/S), adsorption onto two types of powdered activated carbon (PAC)/sedimentation (PAC/S) and the combination of these two processes in different dosing sequences (PAC/C/F/S) and with/without ultrafiltration (powdered activated carbon/ultrafiltration—PAC/UF, coagulation/UF—CoA/UF) for the removal of selected micropollutants from river water. It was shown that the removal efficiency of benzophenones by coagulation depends on the season, while CF was moderately removed (40–70%). The removal of neutral BP by two PACs unexpectedly differed (near 40% and ˃93%), while the removal of BP-3 was excellent (>95%). PACs were not efficient for the removal of hydrophilic CF. Combined PAC/C/F/S yielded excellent removal for BP and BP-3 regardless of PAC type only when the PAC addition was followed by C/F/S, while C/F/S efficiency for CF diminished. The combination of UF with PAC or coagulant showed also high efficacy for benzophenones, but was negligible for CF removal.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 619
Author(s):  
M. L. Jiménez González ◽  
Carlos Hernández Benítez ◽  
Zabdiel Abisai Juarez ◽  
Evelyn Zamudio Pérez ◽  
Víctor Ángel Ramírez Coutiño ◽  
...  

In this paper, the effect of cathode configuration on the performance of a membrane-less microbial fuel cell (MFC) was evaluated using three different arrangements: an activated carbon bed exposed to air (MFCE), a wetland immersed in an activated carbon bed (MFCW) and a cathode connected to an aeration tower featuring a water recirculation device (MFCT). To evaluate the MFC performance, the efficiency of the organic matter removal, the generated voltage, the power density and the internal resistance of the systems were properly assessed. The experimental results showed that while the COD removal efficiency was in all cases over 60% (after 40 days), the MFCT arrangement showed the best performance since the average removal value was 82%, compared to close to 70% for MFCE and MFCW. Statistical analysis of the COD removal efficiency confirmed that the performance of MCFT is substantially better than that of MFCE and MFCW. In regard to the other parameters surveyed, no significant influence of the different cathode arrangements explored could be found.


2019 ◽  
Vol 80 (4) ◽  
pp. 707-716 ◽  
Author(s):  
Min Sang ◽  
Miansong Huang ◽  
Wei Zhang ◽  
Wu Che ◽  
Huichao Sun

Abstract Bioretention is an effective technology for urban stormwater management, but the nutrient removal in conventional bioretention systems is highly variable. Thus, a pilot bioretention column experiment was performed to evaluate the nutrient control of systems with commercial activated carbon and river sediment-derived biochar. Significant chemical oxygen demand (COD) and total phosphorus (TP) leaching were found with the addition of activated carbon and biochar, but total nitrogen (TN) leaching was significantly improved when activated carbon was used as the medium. During a semi-synthetic runoff experiment, the bioretention systems containing two types of fluvial biochar showed relatively better COD and TN control (average mass removal efficiencies and cumulative removal efficiencies) than commercial activated carbon. However, the average TP mass removal efficiency with commercial activated carbon (95% ± 3%) was significantly higher than biochar (48% ± 20% and 56 ± 14%). The addition of biochar in the media increased the nitrogen removal efficiency, and the addition of activated carbon significantly increased the phosphorous removal efficiency. Therefore, both biochar and activated carbon are effective materials for bioretention, and fluvial biochar provides an alternative approach to comprehensively utilize river sediment.


2010 ◽  
Vol 113-116 ◽  
pp. 87-90
Author(s):  
Qing Jie Xie

The microwave irradiation (MI) was found that it had significantly treatment efficiency for pollutants removal. It was developed to treat the alage in this paper. The granular activated carbon (GAC) was used as catalyst. The effect of the acting time, MI power, GAC amount and the initial concentration on alage removal were studied. The results showed: with the increasing of the acting time, MI power, GAC amount the alage removal rate were increased, but the effect of the initial concentration to alage removal was opposite; the optimum value of acting time, MI power and GAC amount were 5min, 450W and 3g respectively with the alage removal efficiency reached up to 100%. It also showed that with the alage removed under the MI the COD, SS were removed too. It was discovered that the oxidation process was basically in conformity with the first-order dynamic reaction(ln(C/C0)=-0.9371t+0.6744(R2=0.9472)).


2011 ◽  
Vol 183-185 ◽  
pp. 1123-1127
Author(s):  
Pei Chao Jian ◽  
Zhao Hui Zhang ◽  
Yu Feng Zhang ◽  
Qin Zhang

Activated carbon filter is often used as the pretreatment process of nanofiltration or reverse osmosis membrane system, especially when the content of organics and free chlorine in influent water is high. However, a lot of microorganisms often rapidly reproduce in the activated carbon filter after continuous operation, resulting in a large number of bacteria in the effluent. So when the activated carbon filter was used as pretreatment of membrane systems, membrane fouling caused by biological contamination often occurred. The objective of this paper was to discuss how to effectively control the activated carbon biological contamination. Three different control methods—water backwashing, hot alkali treatment and ultrasound treatment were compared. Results showed that ultrasound treatment was the most effective. A relatively high removal efficiency of biomass (above 90%) was obtained when 40 kHz ultrasound was applied at 90 W for 20 min. Bacterial count in the effluent can be decreased from 3.90×104CFU•mL-1 to 8.5×103CFU•mL-1. After 3 days of continuous operation, bacteria count increased from 8.5×103CFU•mL-1 to 4.06×104CFU•mL-1. After ultrasound treatment, the removal efficiency of CODCr increased from -386.3% to 73.8%.


2012 ◽  
Vol 61 (4) ◽  
pp. 228-239 ◽  
Author(s):  
Wen-Chao Yin ◽  
Jin-Song Zhang ◽  
Li-Jun Liu ◽  
Yan Zhao ◽  
Tuo Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document