Enhanced production of Fumigaclavine C in liquid culture of Aspergillus fumigatus under a two-stage process

2014 ◽  
Vol 152 ◽  
pp. 162-168 ◽  
Author(s):  
Yi-Xiang Zhu ◽  
Ling-Yun Yao ◽  
Rui-Hua Jiao ◽  
Yan-Hua Lu ◽  
Ren-Xiang Tan
2007 ◽  
Vol 292 (5) ◽  
pp. L1233-L1240 ◽  
Author(s):  
Navneet Kaur Dhillon ◽  
David Pinson ◽  
Sukhbir Dhillon ◽  
Ossama Tawfik ◽  
Marsha Danley ◽  
...  

Pneumonia is a major complication of human immunodeficiency virus (HIV) pathogenesis but it develops only after prolonged infection. We used the macaque model to explore a hypothesis that the disease is a two-stage process, the first stage being establishment of the viral infection in the lung and the second being amplification of virus replication by host factors induced by chemical agents or opportunistic pathogens in the lung. Bleomycin, a chemical known to induce diffuse alveolar damage and pulmonary fibrosis with accumulation of macrophages and a rich T helper type 2 (Th2) cytokine environment, was inoculated intratracheally into five of eight SHIV 89.6P-infected macaques and into one uninfected macaque. Three additional simian HIV (SHIV)-infected macaques without bleomycin treatment served as untreated virus controls. Although none of the animals became clinically ill, bleomycin induced classical host responses in the lungs of all the treated, virus-infected macaques. There was enhanced production of the chemokine, monocyte chemotactic protein-1 (MCP-1), that had previously been shown to cause enhanced replication of the virus. Four of the five treated animals developed more productive SHIV infection in the lungs compared with the infected untreated animals. Enhanced virus replication was found primarily in infiltrating macrophages. Enhanced replication of the virus in the lungs was associated with host factors induced by the drug and supported the hypothesis for a two-stage process of pulmonary pathogenesis.


2014 ◽  
Vol 159 ◽  
pp. 112-117 ◽  
Author(s):  
Ling-Yun Yao ◽  
Yi-Xiang Zhu ◽  
Rui-Hua Jiao ◽  
Yan-Hua Lu ◽  
Ren-Xiang Tan

2020 ◽  
Vol 299 ◽  
pp. 122592 ◽  
Author(s):  
Bikram Basak ◽  
Shouvik Saha ◽  
Pradip K. Chatterjee ◽  
Amit Ganguly ◽  
Soon Woong Chang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Appetite ◽  
2015 ◽  
Vol 95 ◽  
pp. 399-407 ◽  
Author(s):  
Elisabeth Vesnaver ◽  
Heather H. Keller ◽  
Olga Sutherland ◽  
Scott B. Maitland ◽  
J.L. Locher

Solar Cells ◽  
1989 ◽  
Vol 27 (1-4) ◽  
pp. 299-306 ◽  
Author(s):  
Bulent M. Basol ◽  
Vijay K. Kapur ◽  
Richard C. Kullberg

Sign in / Sign up

Export Citation Format

Share Document