scholarly journals Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.

2016 ◽  
Vol 2 (1) ◽  
pp. 71-80
Author(s):  
Lisa Adhani ◽  
Isalmi Aziz ◽  
Siti Nurbayti ◽  
Christie Adi Octavia

Used cooking oil can be used as raw material for biodiesel, but the levels of free fatty acids (Free Fatty Acid, FFA) is quite high. It is necessary for pretreatment in the form of the adsorption process to reduce levels of FFA. This study aims to determine the optimal conditions of adsorption process and determine the quality of biodiesel produced from adsorption processes and transesterification. Natural zeolites are used as adsorbents activated beforehand using ammonium chloride, calcined and heated to obtain H-zeolite. Furthermore, the adsorption process optimization includes the time, the adsorbent concentration, temperature and particle size. The oil that is already in the adsorption catalyst is reacted with methanol and KOH to obtain biodiesel. The optimum adsorption conditions obtained at the time of 90 minutes, the concentration of H-zeolite 12%, temperature 90 ° C, and a particle size of 0.2 mm that can lower FFA levels from 3.2% to 1.1%. Biodiesel produced meets the quality requirements of SNI 04-7182-2006 with a water content of 0.02%, a density of 857.60 kg / m3, the acid value of 0.29 mg-KOH / g, iodine number 15.71, saponification 168 , 02 and cetane index of 75.62. Compounds contained in biodiesel are methyl 9-octadecanoic (49.45%), methyl heksadekanoat (20.79%), and methyl 9,12oktaekanoat 9.12 (18.87%). Keywords: Biodiesel, used cooking oil, adsorption, transesterification, H-zeolitDOI: http://dx.doi.org/10.15408/jkv.v2i1.3107


2021 ◽  
Vol 15 (4) ◽  
pp. 583-590
Author(s):  
Luqman Buchori ◽  
◽  
Didi Dwi Anggoro ◽  
Anwar Ma’ruf ◽  
◽  
...  

The synthesis of biodiesel from the used cooking oil with CaO catalyst from waste animal bones has been investigated. The content of free fatty acids (FFA) in the used cooking oil was reduced by adsorption using activated charcoal from a salak peel. Biodiesel synthesis was carried out via transesterification using CaO catalyst. The CaO catalyst was obtained from waste animal bones calcined in the Ney Vulcan furnace. The effect of calcination temperature was studied in the range of 873‒1273 K. The effect of catalyst loading was investigated by varying within the range of 1‒9 wt %. The methanol to oil molar ratio was investigated in the range from 6:1 to 18:1. The effect of the transesterification reaction time was studied with a time variation of 1‒5 h. The optimum operating conditions were determined. Under these conditions, the yield of biodiesel produced was 97.56 % with an ester content of 96.06 %. It was shown that the physicochemical properties of biodiesel produced meet the standards.


2014 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Edy Purwanto ◽  
Lieke Riadi ◽  
Nathania Tamara I. ◽  
Mellisha Ika K.

Biopolyol is a raw material for synthesis of polyurethanes which is used as thermoset and thermoplastic materials, adhesives, rigid or non-rigid foams and also for coating. The utilization of waste edible oil as feedstock for synthesis of biopolyol has attracted some researchers. However, there is little attention focused on the application of ozone technology for synthesis of biopolyol from used cooking oil through ozonolysis reaction. Response surface methodology was performed to determine the optimal operating condition in the synthesis of biopolyol using ozone and sorbitol as a hydroxyl group source. The influence of input variables such as temperature, reaction time, molar ratio of oil to sorbitol and ozone concentration on hydroxyl value quantified was studied. The optimal condition was determined by high amount of hydroxyl value resulted from response surface method which used the experimental data. The ozonolysis reaction was conducted in a batch reactor equipped with agitator, tube sparger, thermocouple, reflux condenser and potassium iodide trap. Central composite design with four independent variables and one response variable was performed to determine the influence of independent variables on output variable of hydroxyl value of biopolyol. The hydroxyl value of polyol is a quadratic function of molar ratio of oil to methanol and a linear function of reaction temperature. The optimal operating condition was achieved at a temperature of 25℃, a reaction time of 5 hours, molar ratio of used cooking oil to sorbitol is 1:7 and ozone concentration about 4.8%.Keywords: Ozonolysis; Biopolyol; Hydroxyl value; Used cooking oil; Palm oil


2013 ◽  
Vol 14 (3) ◽  
pp. 219 ◽  
Author(s):  
Dwi Kartika ◽  
Senny Widyaningsih

Transesterification of waste cooking oil into biodiesel using KOH catalyst with and without esterification process usingactivated natural zeolite (ZAH) catalyst has been carried out. Activation of the zeolite was done by refluxing with HCl 6Mfor 30 min, followed calcining and oxydized at 500oC for 2 hours, consecutively. The transesterification without esterificationprocess were done using KOH catalyst 1% (w/w) from oil and methanol weight and oil/methanol molar ratio 1:6 at 60oC. Theesterification reaction was also done using ZAH catalyst then continued by transesterification using KOH catalyst inmethanol media. In order to study the effect of ZAH catalyst concentration at constant temperature, the catalysts werevaried, i.e. 0, 1, 2, and 3% (w/w). To investigate the effect of temperature, the experiments were done at various temperaturefrom 30, 45, 60, and 70oC at constant catalyst concentration. The conversion of biodiesel was determined by 1H-NMRspectrometer and physical properties of biodiesel were determined using ASTM standard methods. The results showedthat the transesterification using KOH catalyst without esterification produced biodiesel conversion of 53.29%. The optimumcondition of biodiesel synthesis via esterification process were reached at 60oC and concentration of ZAH catalyst of2% (w/w), that could give biodiesel conversion = 100.00%. The physical properties were conformed with biodiesel ASTM2003b and Directorate General of Oil and Gas 2006 specification.


2017 ◽  
Vol 9 (2) ◽  
pp. 85-93
Author(s):  
Susi Desminarti ◽  
Edi Joniarta

The research has been carried out in the Processing and Chemistry Laboratory of Politeknik Pertanian Negeri Payakumbuh and Post Harvest Laboratory in Bogor since July until November 2006. The research objectives was to prolong the using time of used cooking oil on food industries through applying the empty fruit bunch of palm bioadsorbent. The optimum condition of TKKS applied were 125 mm size and 5% bioadsorben from the weight of oil (Desminarti dan Rahzarni, 2004). The prolonging of cooking oil application can be done throughrefining used cooking oil so that the part of bad cooking oil can be lremoved. Statistical design used in this research was Completely Randomized Design with four treatments dan three replications. If the result was significant it will be followed by DMRT test on 5% significant level. Based on the experiment could be concluded that that four times titration could produced the oil based on SNI criterya in the relation to the water content (0.23%), peroxide value (0.82%) and free fatty acid value (0.23%) and it could also decrease Fe content from 76ppm to 22 ppm, Cu from 1.2 ppm to 0.40 ppm and Non Urea Adduct Forming (NAF) from 126 ppm to 102 ppm. The bioadsorbent sorption content on water varied from 78% to 80%; peroxide value from 14.71 to 59.80%, free fattyacid from 55.61 to 89.25%, Fe from 68.42 to 71.05%, Cu from 5% to 60% and NAF from 17.46 to 19.05%.


2021 ◽  
pp. 20-27
Author(s):  
Ngee Sing Chong ◽  
Francis Uchenna Okejiri ◽  
Saidi Abdulramoni ◽  
Shruthi Perna ◽  
Beng Guat Ooi

Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.


METANA ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Antonius Prihanto ◽  
T.A. Bambang Irawan

Telah dilakukan penelitian tentang pembuatan biodisel dari minyak goreng bekas melalui proses netralisasi-transesterifikasi. Tujuan penelitian ini adalah untuk mengkaji pengaruh temperatur terhadap yield biodiesel, pengaruh konsentrasi katalis terhadap yield biodiesel dan pengaruh rasio molar methanol-minyak goreng bekas terhadap yield biodiesel melalui proses netralisasi dan transesterifikasi. Untuk mendapatkan kondisi proses transesterifikasi terbaik, maka dikaji pengaruh variasi suhu (30 oC, 40 oC, 50 oC, 60 oC, 70 oC), variasi konsentrasi katalis KOH (0,75 %, 1 %, 1,25 %, 1,5 %, 1,75 %) dan rasio molar metanol-minyak (6:1; 7:1; 8:1; 9:1; 10:1) terhadap yield biodiesel yang dihasilkan dari minyak goreng bekas. Hasil penelitian menunjukkan pada rasio 6 : 1, konsentrasi katalis KOH 1 % pada suhu 60 oC mengahasilkan yield biodiesel maksimal sebesar 87,3 %. Effect of Temperature, Catalyst Concentration and Methanol-Oil Molar Ratio Against Biodiesel Yield from Used Cooking Oil Through Neutralization Transesterification ProcessA research has been conducted on the making of biodiesel from used cooking oil through a neutralization-transesterification process. The purpose of this study was to examine the effect of temperature on biodiesel yield, the effect of catalyst concentration on biodiesel yield and the effect of molar ratio of methanol to used biodiesel yield through neutralization and transesterification process. To obtain the best transesterification process condition, the effect of temperature variation (30 oC, 40 oC, 50 oC, 60 oC, 70 oC), KOH catalyst concentration variation (0.75%, 1%, 1.25%, 1,5 %, 1.75%) and the molar ratio of methanol-oil (6: 1; 7: 1; 8: 1; 9: 1; 10: 1) to the yield of biodiesel produced from used cooking oil. The results showed at a ratio of 6: 1, the concentration of 1% KOH catalyst at 60 ° C resulted in a maximum biodiesel yield of 87.3%.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 690 ◽  
Author(s):  
Edgar M. Sánchez Faba ◽  
Gabriel O. Ferrero ◽  
Joana M. Dias ◽  
Griselda A. Eimer

Recent research focuses on new biodiesel production and purification technologies that seek a carbon-neutral footprint, as well as cheap, renewable and abundant raw materials that do not compete with the demand for food. Then, many attractive alternatives arise due to their availability or low-cost, such as used cooking oil, Jatropha oil (non-edible) or byproducts of vegetable oil refineries. Due to their composition and the presence of moisture, these oils may need a pretreatment to reach the established conditions to be used in the biodiesel production process so that the final product complies with the international quality standards. In this work, a solid catalyst based on 10 wt % sodium oxide supported on mesoporous silica SBA-15, was employed in the transesterification of different feedstocks (commercial sunflower and soybean oil, used cooking oil, acid oil from soapstock and Jatropha hieronymi oil) with absolute methanol in the following reaction conditions—2–8 wt % catalyst, 14:1 methanol to oil molar ratio, 60 °C, vigorous magnetic stirring and 5 h of reaction. In this way, first- and second-generation biodiesel was obtained through heterogeneous catalysis with methyl ester yields between 52 and 97 wt %, depending on the free fatty acid content and the moisture content of the oils.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Subrata Das ◽  
Ashim Jyoti Thakur ◽  
Dhanapati Deka

Biodiesel was produced from high free fatty acid (FFA)Jatropha curcasoil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis.


2012 ◽  
Vol 209-211 ◽  
pp. 1136-1141
Author(s):  
Ming Chien Hsiao ◽  
Yung Hung Chang ◽  
Li Wen Chang

This paper introduced a better solution to accelerating the production of biodiesel from waste cooking oil by using suitable acidic and alkaline catalysts in a two-stage catalytic reaction. Next, a co-solvent named tetrahydrofuran (THF), which significantly increased mixing level of the reactants in the mixture of vegetable oil and methanol, was added to form a single phase system. The whole system was then put into a microwave oven to support heat for the transesterification of biodiesel to shorten the reaction time. Reaction conditions of the first stage were methanol to oil molar ratio of 9:1, catalyst amount 1wt%, reaction temperature 60 oC and reaction time 7.5 minutes. In the second stage, for the transesterification, reaction conditions were methanol to oil molar ratio 12:1, catalyst loadings 1 wt%, reaction temperature 60 oC and reaction time 1.5 minutes. Finally, the conversion rate of biodiesel after the nine-minute reaction time was 97.38% which was higher than the EU EN14214 standard value of 96.5%.


Sign in / Sign up

Export Citation Format

Share Document