scholarly journals Food behavior change in late-life widowhood: A two-stage process

Appetite ◽  
2015 ◽  
Vol 95 ◽  
pp. 399-407 ◽  
Author(s):  
Elisabeth Vesnaver ◽  
Heather H. Keller ◽  
Olga Sutherland ◽  
Scott B. Maitland ◽  
J.L. Locher
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Solar Cells ◽  
1989 ◽  
Vol 27 (1-4) ◽  
pp. 299-306 ◽  
Author(s):  
Bulent M. Basol ◽  
Vijay K. Kapur ◽  
Richard C. Kullberg

2010 ◽  
Vol 46 (4) ◽  
pp. 777-783
Author(s):  
Antônio Edson de Souza Lucena ◽  
Divaldo de Almeida Sampaio ◽  
Ednaldo Rosas da Silva ◽  
Virgínia Florêncio de Paiva ◽  
Ana Cláudia Santiago ◽  
...  

Highly purified intravenous immunoglobulin G concentrate (IV IgG) was produced with the use of polyethylene glycol associated to a single-stage precipitation by ethanol, instead of the classic Cohn-Oncley process, which employs cold alcohol as the precipitating agent, in a three-stage process. Precipitation of crude fraction containing more than 95% of immunoglobulin G was performed by liquid chromatography with a cation exchanger, CM-Sepharose, as a stationary phase. During the process, the product was subjected to two-stage viral inactivation. The first stage was performed by the action of sodium caprylate, 30 mM at pH 5.1+/- 0.1, and the second stage was performed by the action of a solvent-detergent mixture. The finished product was formulated at 5% with 10% sucralose as the stabilizing agent. The process yields 3.3g of IgG/liter of plasma. The finished product analysis showed an anti-complementary activity lower than 1CH50. Polymer and aggregate percent levels were lower than 3% in the five batches studied. The analysis of neutralizing capacity showed the presence of antibacterial and antiviral antibodies in at least three times higher concentrations than the levels found in source plasma. The finished product fulfilled all purity requirements stated in the 4th edition of the European pharmacopeia.


2011 ◽  
Vol 47 (9) ◽  
pp. 833-840 ◽  
Author(s):  
P. A. Zaulochnyi ◽  
A. G. Bulaev ◽  
E. E. Savari ◽  
T. A. Pivovarova ◽  
T. F. Kondratieva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document