scholarly journals Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle

2015 ◽  
Vol 192 ◽  
pp. 321-327 ◽  
Author(s):  
Gabriel Martins da Rosa ◽  
Luiza Moraes ◽  
Bruna Barcelos Cardias ◽  
Michele da Rosa Andrade Zimmermann de Souza ◽  
Jorge Alberto Vieira Costa
2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


2018 ◽  
Vol 17 (4) ◽  
pp. 813-820 ◽  
Author(s):  
Lacramioara Rusu ◽  
Maria Harja ◽  
Gabriela Ciobanu ◽  
Liliana Lazar

2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang

2021 ◽  
Vol 1053 (1) ◽  
pp. 012132
Author(s):  
Widayat ◽  
M Suzery ◽  
H Satriadi ◽  
Wahyudi ◽  
J Philia
Keyword(s):  

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoyue Sun ◽  
Yu Zhang ◽  
Zhenping Qu ◽  
Jiti Zhou

AbstractTo overcome the problem that ferrous complexes are easily oxidized by O2 and then lose NO binding ability in the chemical absorption-biological reduction (CABR) process, cobalt(II)-histidine [Co(II)His] was proposed as an alternative. To evaluate the applicability of Co(II)His, the effects of CoHis absorbent on the aerobic denitrification by Paracoccus versutus LYM were investigated. Results indicated that His significantly promoted nitrite reduction. The inhibition effects of CoHis absorbent could be substantially alleviated by increasing the initial His/Co2+ to 4 or higher. CoHis with concentrations of 4, 8, 12, 16 and 20 mM presented no distinct effect on nitrite reduction, but slightly inhibited the reduction of nitrate, resulting in longer lag of nitrate reduction, and obviously promoted the growth of strain LYM. In the presence of 5, 10, 15 and 20 mM CoHis absorbent, the main denitrification product was N2 (not less than 95.0%). This study is of significance in verifying the applicability of Co(II)His in the CABR process, and provides a referable CoHis absorbent concentration as 20 mM with an initial His/Co2+ of 4 for the future experiments.


2010 ◽  
Vol 45 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Kyu-Suk Hwang ◽  
Dae-Won Park ◽  
Kwang-Joong Oh ◽  
Seong-Soo Kim ◽  
Sang-Wook Park

Energy Policy ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 5109-5116 ◽  
Author(s):  
Ho-Jun Song ◽  
Seungmoon Lee ◽  
Sanjeev Maken ◽  
Se-Woong Ahn ◽  
Jin-Won Park ◽  
...  

2021 ◽  
Vol 110 ◽  
pp. 103415
Author(s):  
Hassan A. Salih ◽  
Jeewan Pokhrel ◽  
Donald Reinalda ◽  
Inas AlNashf ◽  
Maryam Khaleel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document