scholarly journals Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor

2019 ◽  
Vol 271 ◽  
pp. 100-108 ◽  
Author(s):  
Mohd Atiqueuzzaman Khan ◽  
Huu Hao Ngo ◽  
Wenshan Guo ◽  
Yiwen Liu ◽  
Long Duc Nghiem ◽  
...  
2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


2014 ◽  
Vol 31 (6) ◽  
pp. 317-323 ◽  
Author(s):  
Mahyar Ghorbanian ◽  
Robert M. Lupitskyy ◽  
Jagannadh V. Satyavolu ◽  
R. Eric Berson

2008 ◽  
Vol 57 (5) ◽  
pp. 687-692 ◽  
Author(s):  
M. A. Climenhaga ◽  
C. J. Banks

Source-separated foodwastes collected from a campus catering facility were processed in bench-scale single-stage anaerobic digesters. The feedstock contained a varied mix of fruits, vegetables, meats and fried foods. A constant organic loading rate (OLR) was maintained with differing hydraulic retention times (HRT). Regular addition of trace elements or prolonged retention time allowed stable digestion at high total volatile fatty acid (TVFA) levels. Reactors on HRT of 25, 50, and 100 days with no micronutrient supplementation exhibited methanogenic failure after approximately 40, 100 and 90 days respectively, while duplicate reactors with micronutrient supplementation maintained stable digestion. An extended HRT of 180 days has so far allowed continued digestion (for reactors with and without micronutrient supplementation) at levels of ammonia nitrogen exceeding 5.7 g l−1 and volatile fatty acid levels exceeding 15 g l−1, usually considered inhibitory or toxic.


Sign in / Sign up

Export Citation Format

Share Document