Effects of Severe Pretreatment Conditions and Lignocellulose-derived Furan Byproducts on Anaerobic Digestion of Dairy Manure

2021 ◽  
pp. 125632
Author(s):  
Joonrae Roger Kim ◽  
K.G. Karthikeyan
2021 ◽  
Vol 9 (2) ◽  
pp. 105055
Author(s):  
Yasmim Arantes da Fonseca ◽  
Nayara Clarisse Soares Silva ◽  
Adonai Bruneli de Camargos ◽  
Silvana de Queiroz Silva ◽  
Hector Javier Luna Wandurraga ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 82-90 ◽  
Author(s):  
Sining Yun ◽  
Chen Zhang ◽  
Yi Wang ◽  
Jiang Zhu ◽  
Xinlei Huang ◽  
...  

2018 ◽  
Vol 78 (8) ◽  
pp. 1772-1781 ◽  
Author(s):  
Hyungjun (Brian) Jo ◽  
Wayne Parker ◽  
Peiman Kianmehr

Abstract A range of thermal pretreatment conditions were used to evaluate the impact of high pressure thermal hydrolysis on the biodegradability of waste activated sludge (WAS) under aerobic and anaerobic conditions. It was found that pretreatment did not increase the overall extent to which WAS could be aerobically biodegraded. Thermal pretreatment transformed the biodegradable fraction of WAS (XH) to readily biodegradable chemical oxygen demand (COD) (SB) (16.5–34.6%) and slowly biodegradable COD (XB) (45.8–63.6%). The impact of pretreatment temperature and duration on WAS COD fractionation did not follow a consistent pattern as changes in COD solubilization did not correspond to the observed generation of SB through pretreatment. The pretreated WAS (PWAS) COD fractionations determined from aerobic respirometry were employed in anaerobic modeling and it was concluded that the aerobic and anaerobic biodegradability of PWAS differed. It was found that thermal pretreatment resulted in as much as 50% of the endogenous decay products becoming biodegradable in anaerobic digestion. Overall, it was concluded that the COD fractionation that was developed based upon the aerobic respirometry was valid. However, it was necessary to implement a first-order decay process that reflected changes in the anaerobic biodegradability of the endogenous products through pretreatment.


2018 ◽  
Vol 21 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Masahiro Iwasaki ◽  
Guangdou Qi ◽  
Yumiko Endo ◽  
Zhifei Pan ◽  
Takaki Yamashiro ◽  
...  

1986 ◽  
Vol 5 (4) ◽  
pp. 339-345 ◽  
Author(s):  
K.V. Lo ◽  
P.H. Liao

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254836
Author(s):  
Yi Wang ◽  
Pramod K. Pandey ◽  
Sundaram Kuppu ◽  
Richard Pereira ◽  
Sharif Aly ◽  
...  

Antibiotic resistance genes (ARGs) are emerging contaminants causing serious global health concern. Interventions to address this concern include improving our understanding of methods for treating waste material of human and animal origin that are known to harbor ARGs. Anaerobic digestion is a commonly used process for treating dairy manure, and although effective in reducing ARGs, its mechanism of action is not clear. In this study, we used three ARGs to conducted a longitudinal bench scale anaerobic digestion experiment with various temperatures (28, 36, 44, and 52°C) in triplicate using fresh dairy manure for 30 days to evaluate the reduction of gene abundance. Three ARGs and two mobile genetic elements (MGEs) were studied: sulfonamide resistance gene (sulII), tetracycline resistance genes (tetW), macrolide-lincosamide-streptogramin B (MLSB) superfamily resistance genes (ermF), class 1 integrase gene (intI1), and transposase gene (tnpA). Genes were quantified by real-time quantitative PCR. Results show that the thermophilic anaerobic digestion (52°C) significantly reduced (p < 0.05) the absolute abundance of sulII (95%), intI1 (95%), tnpA (77%) and 16S rRNA gene (76%) after 30 days of digestion. A modified Collins–Selleck model was used to fit the decay curve, and results suggest that the gene reduction during the startup phase of anaerobic digestion (first 5 days) was faster than the later stage, and reductions in the first five days were more than 50% for most genes.


2013 ◽  
Vol 291-294 ◽  
pp. 383-389
Author(s):  
Jian Ping Sun ◽  
Jun Zhu

Various physical factors including particle size, pH, temperature and so on may influence the release of organic materials from dry dairy manure. The effect of these factors on release of protein and carbohydrate was investigated in this study using Box-Behnken Experimental Design with three factors (particle size, temperature and pH) at three levels. Test results suggested that particle size of 0.15-0.25 mm accounted for almost half of the dry manure particles and the optimum condition for release of protein and carbohydrate were pH 2, particle size 1.0-1.4 mm under reaction temperature of 90 oC, under which the protein and carbohydrate release rates could reach 1570.57 and 2813.29 mg l-1, respectively. The degree to which these factors affected organics release was in the order from high to low of temperature > particle size > pH.


Sign in / Sign up

Export Citation Format

Share Document