Exploring the role of heterotrophs in partial nitritation-anammox process treating thermal hydrolysis process - anaerobic digestion reject water

2021 ◽  
pp. 125762
Author(s):  
Sike Wang ◽  
Heng Yu ◽  
Qingxian Su ◽  
Jiane Zuo
2020 ◽  
pp. 1169-1191
Author(s):  
Grzegorz Cema ◽  
Adam Sochacki

In most cases, the anammox process is used for nitrogen removal from reject water coming from dewatering of digested sludge. However, there are more industrial streams suitable for treatment by partial nitritation/anammox process. The landfill leachate may be a good example of such wastewater. Generally, landfilling is the most used solution for treatment of urban solid wastes. The problem with landfill leachate production and management is one of the most important issues associated with the sanitary landfills. These streams are highly contaminated wastewater with a complex mixture of organic and inorganic compounds and characterized by a high ammonia content and low biodegradable organic fraction matter. The objective of this chapter is the short characteristic of landfill leachate and a short review of its treatment methods with special focus on nitrogen removal by partial nitritation/anammox process.


2020 ◽  
Vol 296 ◽  
pp. 122366 ◽  
Author(s):  
Wangwang Yan ◽  
Liang Zhang ◽  
Surya Maitri Wijaya ◽  
Yan Zhou

2019 ◽  
Vol 80 (7) ◽  
pp. 1338-1346 ◽  
Author(s):  
Oda K. Svennevik ◽  
Odd Egil Solheim ◽  
Greeley Beck ◽  
Geir H. Sørland ◽  
Kjell R. Jonassen ◽  
...  

Abstract Organic waste fractions such as sewage sludge, food waste and manure can be stabilized by anaerobic digestion (AD) to produce renewable energy in the form of biogas. Following AD, the digested solid fraction (digestate) is usually dewatered to reduce the volume before transportation. Post-AD treatments such as the Post-AD thermal hydrolysis process (Post-AD THP) have been developed to improve the dewatering, but the mode of action is not well understood. In this study, samples from 32 commercial full-scale plants were used to assess the impact of Post-AD THP on a broad range of raw materials. Maximum dewatered cake solids after Post-AD THP was predicted by thermogravimetric analysis (TGA). Post-AD THP changed the moisture distribution of the samples by increasing the free water fraction. A consistent improvement in predicted dewatered cake solids was achieved across the 32 samples tested, on average increasing the dry solids concentration by 87%. A full-scale trial showed that dewatering Post-AD THP digestate at 80 °C improved dewatered cake solids above the predictions by TGA at 35 °C. In conclusion, dewatered cake solids were significantly improved by Post-AD THP, reducing the volume of dewatered cake for disposal.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Julien Chauzy ◽  
Didier Cretenot ◽  
Anne Bausseron ◽  
Stéphane Deleris

Veolia Water has developed during these last years its own THP (Thermal Hydrolysis Process) named BIOTHELYS® in order to enhance MAD (mesophilic anaerobic digestion) of municipal or industrial sludge. The first reference BIOTHELYS® has been installed at Saumur in France, an extended aeration biological nutrient removal facility, and commissioned in April 2006. The thermal hydrolysis of dewatered sludge is realised by steam injection at a temperature of 160°C for duration of circa 30 minutes. The THP reactors are paired in order to recover flash steam and heat sludge economically. The MAD of hydrolysed sludge is done within a HRT of 15 days and reaches volatile reduction of more than 45% on extended aeration biological sludge. BIOTHELYS® turns the MAD of extended aeration biological sludge into a very attractive solution while producing green energy with biogas. MAD is thus no more only reserved for mixed sludge but also for pure biological sludge when using THP.


2013 ◽  
Vol 827 ◽  
pp. 368-373
Author(s):  
Guang Li ◽  
He Ren ◽  
Jing Li ◽  
Xiang Kui Han ◽  
Lian Peng Wang

In 110~190°C for 15~75min excess sludge thermal hydrolysis test, investigated the dissolution rate of the volatile suspended solids, Sludge SCOD, TCOD concentration change in composition of organic acids in the supernatant, and analysis the improvement of the anaerobic digestion performance. The results show that, with the increase of thermal hydrolysis temperature and extension of time, sludge supernatant on SCOD, VFA rising. At 190 °C, 75min conditions, SCOD, VFA reached the maximum 6674mg / L2630mg/ L; Sludge organic solids dissolved and the release of COD, etc. mainly in the first 45 min to complete, little change after 45min. When thermal hydrolysis temperature between 90~170°C, anaerobic digestion performance increase with temperature rise, When the temperature is higher than 170 °C, the sludge anaerobic digestion performance begins to decline.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5626-5632
Author(s):  
Elizabeth Manning ◽  
Adrian Romero ◽  
Baoqiang Li ◽  
Ahmed Al-Omari ◽  
Matthew Higgins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document