Anaerobic digestion enhanced by thermal hydrolysis: First reference BIOTHELYS® at Saumur, France

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Julien Chauzy ◽  
Didier Cretenot ◽  
Anne Bausseron ◽  
Stéphane Deleris

Veolia Water has developed during these last years its own THP (Thermal Hydrolysis Process) named BIOTHELYS® in order to enhance MAD (mesophilic anaerobic digestion) of municipal or industrial sludge. The first reference BIOTHELYS® has been installed at Saumur in France, an extended aeration biological nutrient removal facility, and commissioned in April 2006. The thermal hydrolysis of dewatered sludge is realised by steam injection at a temperature of 160°C for duration of circa 30 minutes. The THP reactors are paired in order to recover flash steam and heat sludge economically. The MAD of hydrolysed sludge is done within a HRT of 15 days and reaches volatile reduction of more than 45% on extended aeration biological sludge. BIOTHELYS® turns the MAD of extended aeration biological sludge into a very attractive solution while producing green energy with biogas. MAD is thus no more only reserved for mixed sludge but also for pure biological sludge when using THP.

Author(s):  
Regimantas Dauknys ◽  
Aušra Mažeikienė ◽  
Anna Haluza ◽  
Illia Halauniou ◽  
Victor Yushchenko

One of reasons of non-effective biological nutrient removal from wastewater is lack of readily biodegradable organic matter. This problem could be solved by application of sludge hydrolysis process. The conditions for hydrolysis of primary sludge could be created performing the recirculation of the primary sludge and ensuring the required sludge retention time. In the period of preliminary investigation, the following conditions were created in the primary sedimen-tation tank of Vitebsk WWTP: average sludge recirculation was 4.8 % of the inlet flowrate to the sedimentation tank and average SRT was 5 days. Obtained results showed that hydrolysis process allowed improving the ratio between organic matter and nutrients in wastewater.


Data in Brief ◽  
2021 ◽  
pp. 107323
Author(s):  
Mohamed N.A. Meshref ◽  
Seyed Mohammad Mirsoleimani Azizi ◽  
Wafa Dastyar ◽  
Rasha Maal-Bared ◽  
Bipro Ranjan Dhar

2014 ◽  
Vol 70 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mathijs Oosterhuis ◽  
Davy Ringoot ◽  
Alexander Hendriks ◽  
Paul Roeleveld

The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved.


1999 ◽  
Vol 39 (6) ◽  
pp. 1-11 ◽  
Author(s):  
George A. Ekama ◽  
Mark C. Wentzel

Filamentous bulking and the long sludge age required for nitrification are two important factors that limit the wastewater treatment capacity of biological nutrient removal (BNR) activated sludge systems. A growing body of observations from full-scale plants indicate support for the hypothesis that a significant stimulus for filamentous bulking in BNR systems in alternating anoxic-aerobic conditions with the presence of oxidized nitrogen at the transition from anoxic to aerobic. In the DEPHANOX system, nitrification takes place externally allowing sludge age and filamentous bulking to be reduced and increases treatment capacity. Anoxic P uptake is exploited in this system but it appears that this form of biological excess P removal (BEPR) is significantly reduced compared with aerobic P uptake in conventional BNR systems. Developments in the understanding of the BEPR processes of (i) phosphate accumulating organism (PAO) denitrification and anoxic P uptake, (ii) fermentation of influent readily biodegradable (RB)COD and (iii) anaerobic hydrolysis of slowly biodegradable (SB)COD are evaluated in relation to the IAWQ Activated Sludge Model (ASM) No.2. Recent developments in BEPR research do not yet allow a significant improvement to be made to ASM No. 2 that will increase its predictive power and reliability and therefore it remains essentially as a framework to guide further research.


2008 ◽  
Author(s):  
W. Qiao ◽  
W. Wang ◽  
R. Xun ◽  
Kazuyuki Tohji ◽  
Noriyoshi Tsuchiya ◽  
...  

2018 ◽  
Vol 72 ◽  
pp. 186-192 ◽  
Author(s):  
Michael Bjerg-Nielsen ◽  
Alastair James Ward ◽  
Henrik Bjarne Møller ◽  
Lars Ditlev Mørck Ottosen

Author(s):  
Georgios Samiotis ◽  
Kostas Stamatakis ◽  
Elisavet Amanatidou

Abstract Industrial wastewaters are recognized as a valuable resource, however their disposal without proper treatment can result in environmental deterioration. The associated environmental/operational cost of wastewater treatment necessitates upgrade of applied processes towards the goals of sustainability and mitigation of climate change. The implementation of cyanobacteria-based processes can contribute to these goals via resources recovery, production of high-value products, carbon fixation and green-energy production. The present study evaluates the cyanobacterium Synechococcus elongatus PCC 7942 (S7942) as a biological component for novel and sustainable alternatives to typical biological nutrient removal processes. Valuable results regarding cultivation temperature boundaries, applied disinfection techniques and analytical methods, as well as regarding relations between parameters expressing S7942 biomass concentration are presented. The results show that at typical industrial wastewater temperatures, S7942 efficiently grew and removed nitrates from treated snack-industry's wastewater. Moreover, in cultures with treated and relatively saline dairy wastewater, its growth rate slightly decreased, but nevertheless nitrates removal rate remained efficiently high. A comparison between typical denitrification processes and the proposed nutrient removal process indicated that a S7942-based system may constitute an alternative or a supplementary to denitrification process. Thus, Synechococcus elongatus PCC 7942 proved to be a potent candidate towards sustainable industrial wastewater treatment applications.


2012 ◽  
Vol 65 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
S. I. Pérez-Elvira ◽  
F. Fdz-Polanco

Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.


1994 ◽  
Vol 30 (8) ◽  
pp. 65-72 ◽  
Author(s):  
F. Cecchi ◽  
P. Battistoni ◽  
P. Pavan ◽  
G. Fava ◽  
J. Mata-Alvarez

The paper presents preliminary experimental results which aim to demonstrate the possibility of producing easily biodegradable carbon from a two phase anaerobic digestion process for a biological nutrient removal process. Crystallization of phosphorus into struvite from the liquor of the digested flow is the second goal of the process studied. With this integrated process approach it is possible to double the amount of readily biodegradable COD entering the wastewater works by sewers and to recover up to 70% of phosphorus from the digested flow as struvite without using little amount of chemicals. Struvite granules are useful for agricultural purposes.


Sign in / Sign up

Export Citation Format

Share Document