Enhanced anaerobic digestion of tar solution from rice husk thermal gasification with hybrid upflow anaerobic sludge-biochar bed reactor

2022 ◽  
pp. 126688
Author(s):  
Haiyuan Ma ◽  
Yong Hu ◽  
Jiang Wu ◽  
Takuro Kobayashi ◽  
Kai-Qin Xu ◽  
...  
2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2003 ◽  
Vol 47 (12) ◽  
pp. 207-214 ◽  
Author(s):  
R. Goel ◽  
T. Tokutomi ◽  
H. Yasui

Source minimization of excess sludge production by economical means can be considered an attractive option to deal with the problem of sludge disposal under strict disposal standards. In this paper long-term operational results for a process that combines the oxidative ozone pretreatment with anaerobic sludge digestion are described. The ozone pretreatment solubilized around 19% and 37% of the solids at 0.015 and 0.05 gO3/gTS ozone dose. The solubilization ratios during ozonation did not show any significant difference for the sludge concentrations ranging from 1.8-2.6%. The TVS concentrations after ozone treatment were observed to be about 3% lower than the feed sludge concentrations suggesting only partial mineralization during ozonation. The ozone pretreatment resulted in improved solid reduction efficiencies during anaerobic digestion leading to higher methane recovery. The TVS removal efficiencies during anaerobic digestion were observed to increase by a maximum of 35-90% depending on the applied ozone dose during ozone pretreatment. The improvement in TVS degradation efficiency at different applied ozone doses correlated well with the extent of solubilization during ozonation. Long-term data also suggested that biomass acclimation to ozonated sludge was necessary before higher degradation efficiencies could be achieved.


2006 ◽  
Vol 54 (4) ◽  
pp. 129-137 ◽  
Author(s):  
U. Zaher ◽  
M.S. Moussa ◽  
I.N. Widyatmika ◽  
P. van Der Steen ◽  
H.J. Gijzen ◽  
...  

The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.


2018 ◽  
Vol 24 (12) ◽  
pp. 9875-9876
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Windy Surya Permana ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Sign in / Sign up

Export Citation Format

Share Document