Suction force on high-sphericity seeds in an air-suction seed-metering device

2021 ◽  
Vol 211 ◽  
pp. 125-140
Author(s):  
Junhong Li ◽  
Qinghui Lai ◽  
Hui Zhang ◽  
Zhaoguo Zhang ◽  
Jinwen Zhao ◽  
...  
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
SK PATEL ◽  
JB BHIMANI ◽  
P GUPTA ◽  
BK YADUVANSHI

Singulation of seeds has been investigated extensively by researchers all over the world and a large number of precision seeding systems with design variations have been developed for different crops. A picking type metering mechanism was developed at CAET, AAU, Godhra, Gujarat, India. The performance of the picking type seed-metering device of a pneumatic planter was investigated under laboratory conditions to optimize the operating parameters for lady's finger seed. The picking of single seed the three operational parameters i.e. hole diameters for the nozzle: 1.0, 1.5, 2.5 and 3.0 mm; forward speed: 0.37, 0.56, 0.83, 1.11 and 1.30 m/s and vacuum pressure: 19.33, 39.32, 43.98, 58.64 and 68.63 kPa were selected for the study. The metering system of the planter was set to place the seed to seed spacing at 300 mm. The response surface methodology (RSM) technique was used to optimize the operational parameters of a precision planter. For optimizing the forward speed, vacuum pressure and nozzle size for developed machine was evaluated by examining the miss index, multiple index, quality of feed index and precision. The data obtained in the experiments were used to develop functions in polynomial form using multiple regression technique. The optimum value was found to be around 0.96 m/s, 36.25 kPa and 2.0 mm of forward speed, vacuum pressure and the holes diameter of nozzle, respectively. The most important variable that governs planting phenomenon is the combination of hole diameter of nozzle and vacuum pressure accounts 89.18 per cent.


2021 ◽  
Vol 11 (16) ◽  
pp. 7223
Author(s):  
Dengyu Xiong ◽  
Mingliang Wu ◽  
Wei Xie ◽  
Rong Liu ◽  
Haifeng Luo

To address the problems of high damage rate, low seeding accuracy, and poor seeding generally in the seeding process, a general-purpose seeding device was designed in this study based on the principle of mechanical pneumatic combined seeding. The air-blowing-type cleaning and seed unloading of the device laid the conditions for precise seeding and flexible seeding. In addition, single-factor experiments were performed on seeds (e.g., soybeans, corn, and rape-seeds) with different particle sizes and shapes to verify the general properties of the seed metering device. A multi-factor response surface optimization experiment was performed by applying soybean seeds as the test object to achieve the optimal performance parameters of the seed metering device. At a seed-clearing air velocity of 16.7 m/s, a seed feeding drum speed of 13.7 r/min, and a hole cone angle of 35.6°, corresponding to the optimal performance index, the qualified index, the replay index, and the missed index reached 97.94%, 0.03%, and 2.03%, respectively. The verification test results are consistent with the optimized ones. As indicated from the results, the seed metering device exhibits good general properties, low damage rate, great precision, and high efficiency; it is capable of meeting general seeding operations of different crop seeds and technically supporting for the reliability and versatility of the seeder.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 50
Author(s):  
Hideyuki Tsukagoshi ◽  
Yuichi Osada

A universal suction cup that can stick to various objects expands the areas in which robots can work. However, the size, shape, and surface roughness of objects to which conventional suction cups can stick are limited. To overcome this challenge, we propose a new hybrid suction cup structure that uses the adhesive force of sticky gel and the suction force of negative pressure. In addition, a flexible and thin pneumatic balloon actuator with a check valve function is installed in the interior, enabling the controllable detachment from objects. The prototype has an outer diameter of 55 mm, a weight of 18.8 g, and generates an adsorption force of 80 N in the vertical direction and 60 N in the shear direction on porous walls where conventional suction cups struggle to adsorb. We confirmed that parts smaller than the suction cup and fragile potato chips are adsorbed by the prototype. Finally, the effectiveness of the proposed method is verified through experiments in which a drone with the prototypes can be attached to and detached from concrete walls and ceilings while flying; the possibility of adsorption to dusty and wet plates is discussed.


2004 ◽  
Vol 48 (04) ◽  
pp. 305-310
Author(s):  
J. A. Sparenberg ◽  
E. M. de Jager

This paper considers the suction force at the leading edge of a profile with zero thickness in an incompressible and inviscid fluid flow. The theory is linear, and the approach to the suction force is from the innerside of the profile. It is shown that the suction force can be considered as an "integral" over a delta function of Dirac situated at the nose of the profile. An application of the method is given to show that in the linear theory a nonslotted periodically moving profile that does not shed free vorticity cannot yield a nonzero mean thrust.


Author(s):  
Guocheng Zhao ◽  
Haining Lu ◽  
Longfei Xiao ◽  
Jingchao Hu

Abstract Turbulent suction pipe flow around a near-wall ellipsoid nodule, as basic research of polymetallic nodule hydraulic collection, is investigated numerically and experimentally in this paper. Seven ellipsoids with axe ratios (a/b) ranging from 1 to 2 are considered as nodule models to reveal the shape effect on the characteristics of suction forces and suction flow field. Methods of particle image velocimetry (PIV) and dye tracing were used to visualize the suction flow field. The results indicate that: (1) suction force coefficients increase with a/b; (2) the shape effect is more significant in the cases with smaller ratios of bottom clearance to semi-thickness of the ellipsoid (h/c); (3) the weak vortex shedding in suction flow results in small-amplitude fluctuations of time-history suction forces; (4) the detached-eddy simulation (DES) method based on shear stress transport (SST) model is validated to be accurate and feasible for predicting the suction forces and suction flow field. It is expected to provide references for the design of nodule pick-up devices and to help us further understand the mechanism of hydraulic collection.


2015 ◽  
Vol 8 (6) ◽  
pp. 411-416
Author(s):  
Xiaoshun Zhao ◽  
Xiong Du ◽  
Zhikai Ma ◽  
Huali Yu ◽  
Jinguo Zhang
Keyword(s):  

2012 ◽  
Vol 215-216 ◽  
pp. 160-167 ◽  
Author(s):  
Qing Long Li ◽  
Ji Yang Yu ◽  
Qiang Qiang Zhang ◽  
Jian Qun Yu ◽  
Hong Fu

A three-dimensional discrete element method analytic model of the corn seed metering device with combination inner-cell was established based on its 3D CAD model, and the three-dimensional particle model of corn seeds was built by using the method of combination spherical particle. The working process of the corn seed metering device was simulated and analyzed by self-developed three-dimensional CAE software. It was observed that the simulative results of the seeding performance, clearing angles and dropping angles of the corn seeds well agreed with the bench test results. A novel method for studying and designing of the corn seed metering device was put forward.


2018 ◽  
Vol 89 (12) ◽  
pp. 2342-2352
Author(s):  
Thi Viet Bac Phung ◽  
Akihiro Yoshida ◽  
Yoshiyuki Iemoto ◽  
Hideyuki Uematsu ◽  
Shuichi Tanoue

To clarify the formation mechanism of a source of yarn and to discuss the effects of supplied air pressure and exhaust air pressure on the fiber suction force and twist torque at the starting time of the spinning process in an air-jet spinning machine, we simulated, numerically, the three-dimensional airflow pattern without fibers in the spinning zone. Results obtained are as follows: High-speed air jetted through the starting nozzles into the yarn duct in the circumferential direction causes a swirl flow in the yarn duct and a negative pressure region near the center axis of the yarn duct. Hence, air and fibers at the fiber inlet are sucked through the processing duct into the yarn duct. A fiber bundle sucked into the yarn duct rotates, owing to the action of the swirl airflow, and twists the fiber bundle in the processing duct, hence generating a source of yarn. The fiber suction force takes a distribution with a peak against the supplied air pressure and is independent of the exhaust air pressure. The fiber twist torque increases monotonously with supplied air pressure.


Sign in / Sign up

Export Citation Format

Share Document