scholarly journals Corrigendum to “Quantifying porosity changes in solid biomass waste using a disruptive approach of water retention curves (WRC) for dry anaerobic digestion” [Bioresour. Technol. (2020) 12, 100585]

2021 ◽  
Vol 16 ◽  
pp. 100725
Author(s):  
M.A. Hernandez-Shek ◽  
M. Mathieux ◽  
L. André ◽  
P. Peultier ◽  
A. Pauss ◽  
...  
2021 ◽  
Author(s):  
Erdiwansyah Erdiwansyah ◽  
Mahidin Mahidin ◽  
Husni Husin ◽  
Nasaruddin Nasaruddin ◽  
Muhtadin Muhtadin ◽  
...  

Abstract Combustion efficiency is one of the most important parameters, especially in the FBC combustion chamber. Investigations into the efficiency of combustion in FBC fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the FBC combustion chamber. Combustion efficiency is calculated based on combustion results from modification of hollow plates in the FBC combustion chamber. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as PKS, OPM, and EFB. The results of the measurements showed that the maximum combustion temperature for MCC fuel reached 863oC for M1 and 887oC on M2. The maximum combustion temperature measurements for M1 and M2 from OPM fuel testing reached 898oC and 858oC, respectively, while the maximum combustion temperature for EFB fuel was 667oC andM2 847oC, respectively. The rate of combustion efficiency with the modification of the hole plate in the FBC combustion chamber reached 96.2%. Thermal efficiency in FBC combustion chamber for OPM 72.62%, MCC 70.03%, and EFB 52.43%. The highest heat transfer rates for OPM fuel reached 7792.36 w/m, MCC 7167.38 w/m, and EFB 5127.83 w/m. Thus, modification of the holed plate in the FBC chamber showed better performance of the plate without modification.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6095-6109
Author(s):  
Xiaohang Sun ◽  
Zijun Sun ◽  
Yanbin Xin ◽  
Bing Sun ◽  
Xiaomin Lu

Biomass resources in nature produce a large amount of waste resources (agricultural residues, wood waste, etc.) during agricultural and forestry production processes. Therefore, the effective utilization of these solid biomass waste resources has attracted widespread interest. In this paper, a pulsed discharge plasma technology was used to perform catalytic liquefaction experiments on solid biomass sawdust at room temperature and atmospheric pressure, and the reaction parameters such as the solid:liquid ratio, liquefaction solvent ratio, and catalyst ratio were optimized. The results showed that the plasma technology achieved a higher liquefaction yield; the optimized reaction parameters were: a solid:liquid ratio of 1:23.4, a liquefaction solvent polyethylene glycol (PEG) / glycerol (GL) ratio of 25:15 (V:V), and an acid volume fraction of 0.188%. In addition, the characteristics of the products of the liquefaction reaction were analyzed and discussed. The liquid products were mainly composed of small molecules. The experiment established that the liquefaction of solid sawdust by high-voltage pulsed discharge plasma can be an effective technical method.


2021 ◽  
Author(s):  
Akinola David Olugbemide ◽  
Blaž Likozar ◽  
Ana Oberlintner ◽  
Uroš Novak ◽  
Ekebafe Lawrence

Abstract In this research study, the impact of the feedstock to the inoculum (F/I) amount ratio in the dry anaerobic digestion (DAD) of Hura crepitans leaves was evaluated. Measured biogas volumes, as well as the chemical kinetic predictions for exponential, logistic and Gompertz model, depicting the agreement of the simulations over time, were also determined. From the F/I equivalents 2, 4 and 6 at 22 % of packed total solids, which were considered in analysis test procedure, the DAD digester with F/I number 4 was the most promising in terms of biogas’ production rate. Its daily methane/carbon dioxide was 690 mL, while cumulative generation productivity was greater than 2 L/sample, respectively. On the other hand, the DAD reaction with F/I contained 6, recorded the lowest related expressed primary matter of < 1 L. An associated early commencement of the organic material breakdown in all bio vessels was indicative of a good start-up phase, which is one of the challenges, often encountered in DAD process. Furthermore, applied experimental methods revealed the direct correlation phenomena between biodegradability physical constants, measured molecular CH4/CO2 synthesis and simulations. Hura crepitans being an invasive plant species makes its lignocellulosic fractions desired in terms of valorisation, as it is not competing with agricultural crop products. Modelling can, moreover, contribute to consecutive operation optimisation, scaling and integrating, also taking dynamics under consideration. As opposed to bio-refining wood residues, where individual cellulose, hemicellulose or lignin biopolymers can be attained, degradation to yield CH4 is robust, as well as compatible in combustion.


Sign in / Sign up

Export Citation Format

Share Document