Synthesis of xanthosine 2-phosphate diesters via phosphitylation of the carbonyl group

Author(s):  
Natsuhisa Oka ◽  
Hiroki Hirabayashi ◽  
Kota Kumada ◽  
Kaori Ando
1979 ◽  
Vol 44 (4) ◽  
pp. 1318-1323
Author(s):  
Miloslava Počtová

A mechanism of the electrochemical reduction of β-(4-ethylbenzoyl)-α,β-dibromopropionic acid is suggested based on the results of classical polarography and polarography with Kalousek's switch and on the identification of the polarographically active intermediate products. The substance converts to β-4-ethylbenzoylacrylic acid on the electrochemical elimination of the bromine atoms, and the latter acid is reduced further to β-4-ethylbenzoylpropionic acid. The most negative polarographic wave corresponds to the reduction of the carbonyl group in the benzoyl part of the last acid.


1997 ◽  
Vol 62 (8) ◽  
pp. 1169-1176 ◽  
Author(s):  
Antonín Lyčka ◽  
Jaroslav Holeček ◽  
David Micák

The 119Sn, 13C and 1H NMR spectra of tris(1-butyl)stannyl D-glucuronate have been measured in hexadeuteriodimethyl sulfoxide, tetradeuteriomethanol and deuteriochloroform. The chemical shift values have been assigned unambiguously with the help of H,H-COSY, TOCSY, H,C-COSY and 1H-13C HMQC-RELAY. From the analysis of parameters of 119Sn, 13C and 1H NMR spectra of the title compound and their comparison with the corresponding spectra of tris(1-butyl)stannyl acetate and other carboxylates it follows that in solutions of non-coordinating solvents (deuteriochloroform) the title compound is present in the form of more or less isolated individual molecules with pseudotetrahedral environment around the central tin atom and with monodentately bound carboxylic group. The interaction of tin atom with oxygen atoms of carbonyl group and hydroxyl groups of the saccharide residue - if they are present at all - are very weak. In solutions in coordinating solvents (hexadeuteriodimethyl sulfoxide or tetradeuteriomethanol), the title compound forms complexes with one molecule of the solvent. Particles of these complexes have a shape of trigonal bipyramid with the 1-butyl substituents in equatorial plane and the oxygen atoms of monodentate carboxylic group and coordinating solvent in axial positions.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2014 ◽  
Vol 10 ◽  
pp. 1246-1254 ◽  
Author(s):  
Zbigniew Pakulski ◽  
Norbert Gajda ◽  
Magdalena Jawiczuk ◽  
Jadwiga Frelek ◽  
Piotr Cmoch ◽  
...  

The reaction of appropriately functionalized sucrose phosphonate with sucrose aldehyde afforded a dimer composed of two sucrose units connected via their C6-positions (‘the glucose ends’). The carbonyl group in this product (enone) was stereoselectively reduced with zinc borohydride and the double bond (after protection of the allylic alcohol formed after reduction) was oxidized with osmium tetroxide to a diol. Absolute configurations of the allylic alcohol as well as the diol were determined by circular dichroism (CD) spectroscopy using the in situ dimolybdenum methodology.


Synthesis ◽  
2021 ◽  
Author(s):  
Sambasivarao Kotha ◽  
Sunil Pulletikurti ◽  
Ambareen Fatma ◽  
gopal dhangar ◽  
gonna somu Naidu

Here, we have demonstrated that the presence of a carbonyl group at C7 position is preventing the olefin metathesis of endo-norbornene derivatives due to the complexation of the metal alkylidene. Time-dependent NMR studies showed the presence of new proton signals in the metal alkylidene region, which indicate the formation of metal complex with the carbonyl group of the substrate. These observations were further proved by ESI-MS analysis. Whereas, computational studies provided that the catalyst was interacting with the C7 carbonyl group and aligned perpendicular to that of norbornene olefin. Later, these endo-keto norbornene derivatives were reduced to hydroxyl derivatives diastereoselectively. Ring-rearrangement metathesis (RRM) of these hydroxyl derivatives, produced the [6/5/6], and [5/6/5] carbo-tricyclic cores of the natural products in one step. Whereas the RRM of O-allyl derivatives, delivered the oxa-tricyclic compounds in a single step with excellent yields.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hassan Kabirifard ◽  
Pardis Hafez Taghva ◽  
Hossein Teimouri ◽  
Niloofar Koosheshi ◽  
Parastoo Javadpour ◽  
...  

The reaction of 4-benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione (1) with aminoheteroaryls, lamotrigine, 1,3-diaminoheteroaryls, dapsone, NH2R (hydroxylamine, DL-1-phenylethylamine, and metformin), and 4,4′-bipyridine in THF/H2O (1 : 1) at room temperature led to 3-N-phenylthiocarbamoyl-2-butenamides 2–5, while that with naphthylamines and 1,3-phenylenediamine in ethanol at high temperature led to 5-phenylamino-2,5-dihydrothiophene-2-ones 6–8 as organic ligands in the medium to good yields. These showed the nucleophilic attacks of N-nucleophiles, except primary aromatic amines, on thioester carboxyl group (C-2) of thiophene-2,3-dione ring 1. However, the nucleophilic attacks of primary aromatic amines on the carbonyl group (C-3) of thiophene-2,3-dione 1 occurred in the form of substituted thiophenes.


Sign in / Sign up

Export Citation Format

Share Document